1
|
Bittarello AC, Vieira JCS, Braga CP, da Cunha Bataglioli I, de Oliveira G, Rocha LC, Zara LF, Buzalaf MAR, de Oliveira LCS, Adamec J, de Magalhães Padilha P. Metalloproteomic approach of mercury-binding proteins in liver and kidney tissues of Plagioscion squamosissimus (corvina) and Colossoma macropomum (tambaqui) from Amazon region: Possible identification of mercury contamination biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134547. [PMID: 31812405 DOI: 10.1016/j.scitotenv.2019.134547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Fish is an important source of protein, vitamins, and minerals. However, this food is also a major source of human exposure to toxic contaminants such as mercury. Thus, this paper aimed to evaluate mercury-binding proteins for possible application as biomarkers of mercury contamination in hepatic and renal tissues of Plagioscion squamosissimus (carnivorous fish) and Colossoma macropomum (omnivorous fish) from the Amazon region using metalloproteomic approach. The proteome of hepatic and renal tissues of fish species was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the mercury concentrations in protein spots were determined by graphite furnace atomic absorption spectrometry (GFAAS). Finally, the protein spots associated to mercury were characterized by electrospray ionization mass spectrometry (ESI-MS/MS). The activity of antioxidant enzymes (SOD, CAT, GPx, and GST) and lipid peroxidation (LPO) were also determined. The results showed that the highest concentrations of mercury were found in the carnivorous species (P. squamosissimus) and that the accumulation pattern of this metal was higher in hepatic tissues than in renal tissues for both species. A tendency was observed for greater enzymatic activity in the hepatic and renal tissues of P. squamosissimus, the species with the highest concentration of mercury. Only GPx activity in the kidney and GST in the liver were lower for the P. squamosissimus species, and this finding can be explained by the interaction of mercury with these enzymes. The data obtained by ESI-MS/MS allowed for the characterization of the protein spots associated to mercury, revealing proteins involved in energy metabolism, biomolecules transport, protein synthesis and degradation, cell differentiation, gene regulation, and the antioxidant system. The results obtained in the present study can contribute to understanding the physiological processes underlying mercury toxicity and have provided new perspectives on possible candidates for mercury contamination biomarkers in fish.
Collapse
Affiliation(s)
- Alis Correia Bittarello
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | - José Cavalcante Souza Vieira
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil; Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul, Campo Grande (UFMS), Brazil.
| | | | | | | | - Leone Campos Rocha
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | - Luiz Fabrício Zara
- University of Brasília (UNB), College of Planaltina, Distrito Federal, Brazil
| | | | | | - Jiri Adamec
- University of Nebraska (UNL), Lincoln, United States
| | - Pedro de Magalhães Padilha
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil.
| |
Collapse
|
2
|
Feng LL, Cheng TY. A survey of proteins in midgut contents of the tick, Haemaphysalis flava, by proteome and transcriptome analysis. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:269-287. [PMID: 31898761 DOI: 10.1007/s10493-019-00457-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Tick blood meals are stored and digested in their midguts. Blood digestion is complex, and many proteins are involved. Study of the tick-derived proteins in the midgut content may aid in the discovery of active molecules that would be useful for anti-tick vaccines. We analyzed the midgut content proteomes of partially engorged female Haemaphysalis flava, fully engorged female H. flava, and hedgehog serum using liquid chromatography tandem-mass spectrometry and label-free quantitation. In this study, high-confidence protein profiling of tick midgut content was determined. Based on the search against our in-house transcriptome database, the 28 high-confidence proteins were identified. Of these, 17 were identified as tick-derived, and the rest were of unspecified origin (proteins that could not be differentiated as host-derived or tick-derived proteins). The function of these midgut content proteins identified here may involve nutrient transportation, anti-coagulation, erythrocyte lysis, detoxification, lipid metabolism, and immunization. The presence of hemoglobin suggested that the red blood cells were lysed in the gut lumen. The midgut contents contain a large amount of fibrinogen and it has the ability to clot immediately. The midgut contained mostly host-derived proteins, and these host proteins provide rich nutrients for tick development and reproduction. However, some intracellular proteins were also identified, suggesting the possibility of shedding of the midgut epithelium and ingestion of saliva during feeding. This finding advances our understanding of the digestive mechanism and will be useful in the screening of vaccine antigens.
Collapse
Affiliation(s)
- Li-Li Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan Province, People's Republic of China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan Province, People's Republic of China.
| |
Collapse
|
3
|
Characterization of molecular biomarkers of mercury exposure to muscle tissue of Plagioscion squamosissimus and Colossoma macropomum from the Amazon region. Food Chem 2019; 276:247-254. [DOI: 10.1016/j.foodchem.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
4
|
Chintapalli SV, Bhardwaj G, Patel R, Shah N, Patterson RL, van Rossum DB, Anishkin A, Adams SH. Molecular dynamic simulations reveal the structural determinants of Fatty Acid binding to oxy-myoglobin. PLoS One 2015; 10:e0128496. [PMID: 26030763 PMCID: PMC4451517 DOI: 10.1371/journal.pone.0128496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a "U" shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state.
Collapse
Affiliation(s)
- Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SVC); (SHA)
| | - Gaurav Bhardwaj
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Reema Patel
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Natasha Shah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Randen L. Patterson
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Damian B. van Rossum
- Center for Computational Proteomics, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Sean H. Adams
- Arkansas Children’s Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SVC); (SHA)
| |
Collapse
|
5
|
Hedgepeth SC, Garcia MI, Wagner LE, Rodriguez AM, Chintapalli SV, Snyder RR, Hankins GDV, Henderson BR, Brodie KM, Yule DI, van Rossum DB, Boehning D. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem 2015; 290:7304-13. [PMID: 25645916 DOI: 10.1074/jbc.m114.611186] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.
Collapse
Affiliation(s)
- Serena C Hedgepeth
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, the Cell Biology Graduate Program and
| | - M Iveth Garcia
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, the Cell Biology Graduate Program and
| | - Larry E Wagner
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ana M Rodriguez
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sree V Chintapalli
- the Department of Biology, Penn State University, University Park, Pennsylvania, 16802, and
| | - Russell R Snyder
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gary D V Hankins
- the Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Beric R Henderson
- the Centre for Cancer Research, Westmead Millennium Institute at Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Kirsty M Brodie
- the Centre for Cancer Research, Westmead Millennium Institute at Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - David I Yule
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Damian B van Rossum
- the Department of Biology, Penn State University, University Park, Pennsylvania, 16802, and
| | - Darren Boehning
- From the Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030,
| |
Collapse
|
6
|
Sedivy JM. Phosphatidylenthanolamine Binding Protein aka Raf Kinase Inhibitor Protein: A Brief History of Its Discovery and the Remarkable Diversity of Biological Functions. ACTA ACUST UNITED AC 2011; 2:1-12. [PMID: 23227430 DOI: 10.1615/forumimmundisther.v2.i1.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphatidylethanolamine-binding protein (PEBP) was identified almost three decades ago as an abundant protein in bovine brain. PEBP is the prototype of a highly conserved family of proteins represented in all three major phylogenetic divisions, eukaryota, bacteria, and archaea, with no significant sequence homology to other proteins. PEBP proteins have been studied in many species. The most thoroughly explored biological role of PEBP is that of a modulator of intracellular signaling pathways, which is mediated by its ability to bind and inhibit a number of protein kinases. The first such interaction that came to light was with the Raf1 kinase, and PEBP is thus widely referred to in the literature under its alternate name RKIP (Raf kinase inhibitory protein). The activity of RKIP itself is subject to regulation by phosphorylation. Intriguingly, PEBP has also been reported to possess additional, and diverse, biological functions unrelated to protein kinase networks that remain to be investigated in detail. Recent findings that RKIP may function as a suppressor of cancer metastasis are of great interest and importance. Prognostic and therapeutic applications of RKIP in human cancer were the subject of the first international workshop on RKIP that was held at the University of California, Los Angeles, in March 2010. This paper was presented at the workshop as a summary of the history of this still small but rapidly evolving field.
Collapse
Affiliation(s)
- John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Providence, RI 02903; Tel.: 401-863-7631;
| |
Collapse
|
7
|
Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996; 35:243-82. [PMID: 9082452 DOI: 10.1016/s0163-7827(96)00006-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J F Glatz
- Department of Physiology, Maastricht University, The Netherlands.
| | | |
Collapse
|
8
|
Zschiesche W, Kleine AH, Spitzer E, Veerkamp JH, Glatz JF. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues. Histochem Cell Biol 1995; 103:147-56. [PMID: 7634154 DOI: 10.1007/bf01454012] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cellular fatty acid-binding proteins (FABP) are a highly conserved family of proteins consisting of several subtypes, among them the mammary-derived growth inhibitor (MDGI) which is quite homologous to or even identical with the heart-type FABP (H-FABP). The FABPs and MDGI have been suggested to be involved in intracellular fatty acid metabolism and trafficking. Recently, evidence for growth and differentiation regulating properties of MDGI and H-FABP was provided. Using four affinity-purified polyclonal antibodies against bovine and human antigen preparations, the cellular localization of MDGI/H-FABP in human and mouse tissues and organs was studied. The antibodies were weakly cross-reactive with adipose tissue extracts known to lack H-FABP, but failed to react by Western blot analysis with liver-type FABP (L-FABP) and intestinal-type FABP (I-FABP). MDGI/H-FABP protein was mainly detected in myocardium, skeletal and smooth muscle fibres, lipid and/or steroid synthesising cells (adrenals, Leydig cells, sebaceous glands, lactating mammary gland) and terminally differentiated epithelia of the respiratory, intestinal and urogenital tracts. The results provide evidence that expression of H-FABP is associated with an irreversibly postmitotic and terminally differentiated status of cells. Since all the antisera employed showed spatially identical and qualitatively equal immunostaining, it is suggested that human, bovine and mouse MDGI/H-FABP proteins share highly homologous epitopes.
Collapse
Affiliation(s)
- W Zschiesche
- Max-Delbrück-Centre of Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
Liver fatty acid binding protein (L-FABP), a cytoplasmic 14 kDa protein previously termed Z protein, is conventionally considered to be an intracellular carrier of fatty acids in rat hepatocytes. The following evidence now indicates that L-FABP is also a specific mediator of mitogenesis of rat hepatocytes: a. the synergy between the action of L-FABP and unsaturated fatty acids, especially linoleic acid, in the promotion of cell proliferation; b. the specific requirement for L-FABP in induction of mitogenesis by two classes of nongenotoxic hepatocarcinogenic peroxisome proliferators (amphipathic carboxylates and tetrazole-substituted acetophenones); c. the direct correlation between the binding avidities of different prostaglandins for L-FABP and their relative growth inhibitory activities toward cultured rat hepatocytes; d. the temporal coincidences between the covalent binding to L-FABP by chemically reactive metabolites of the genotoxic carcinogens, 2-acetylaminofluorene and aminoazo dyes, and their growth inhibitions of hepatocytes during liver carcinogenesis in rats; e. and f. the marked elevations of L-FABP in rat liver during mitosis in normal and regenerating hepatocytes, and during the entire cell cycle in the hyperplastic and malignant hepatocytes that are produced by the genotoxic carcinogens, 2-acetylaminofluorene and aminoazo dyes. These actions of L-FABP are consistent with those of a protein involved in regulation of hepatocyte multiplication. Discovery that L-FABP, the target protein of the two types of genotoxic carcinogens, is required for the mitogenesis induced by two classes of nongenotoxic carcinogens points to a common process by which both groups of carcinogens promote hepatocyte multiplication. The implication is that during tumor promotion of liver carcinogenesis, these genotoxic and nongenotoxic carcinogens modify the normal process by which L-FABP, functioning as a specific receptor of unsaturated fatty acids or their metabolites, promotes the multiplication of hepatocytes.
Collapse
Affiliation(s)
- S Sorof
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
10
|
Yamada J, Sugiyama H, Sakuma M, Suga T. Specific binding of dehydroepiandrosterone sulfate to rat liver cytosol: a possible association with peroxisomal enzyme induction. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:139-46. [PMID: 7999152 DOI: 10.1016/0167-4889(94)90121-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Incubation of [3H]dehydroepiandrosterone sulfate (DHEAS) with rat liver cytosol demonstrated its specific binding with a dissociation constant of 72 +/- 14 nM and a maximal binding capacity of 312 +/- 105 fmol/mg cytosol protein. The binding correlated with the amount of cytosol protein, and depended on time, temperature and pH, with equilibrium being reached after 6 h at 0 degrees C and pH 7.5. Boiling or treatment of the cytosol with proteases or sulfhydryl-blocking reagents affected the binding. The apparent molecular mass of the binding entity was estimated to be 160-230 kDa by HPLC gel filtration. In competitive binding studies, free steroids, including dehydroepiandrosterone (DHEA), sulfatase substrates and ligands of organic anion binders such as ligandin and fatty acid binding protein, had no effect on the [3H]DHEAS binding. Peroxisome proliferators also had no effect, except Wy-14,643. Competition with various steroids related to DHEAS revealed strict structural requirements for DHEAS binding, in which epiandrosterone sulfate was almost as effective as unlabeled DHEAS in inhibiting [3H]DHEAS binding. These findings indicated the presence of a binding protein highly specific to DHEAS in rat liver cytosol. The DHEAS binding in liver cytosol was 2-fold higher in male than in female rats. The cytosolic DHEAS binding was highest in the liver, followed by the kidney and heart. The possibility of association between the DHEAS binding and DHEA induction of peroxisomal beta-oxidation is discussed.
Collapse
Affiliation(s)
- J Yamada
- Department of Clinical Biochemistry, Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|
11
|
Gong YZ, Everett ET, Schwartz DA, Norris JS, Wilson FA. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A 1994; 91:4741-5. [PMID: 8197128 PMCID: PMC43864 DOI: 10.1073/pnas.91.11.4741] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cDNA clone encoding the major intestinal cytosolic 14-kDa bile acid-binding protein (14-kDa I-BABP) was isolated from a rat ileal lambda gt22A library following immunoscreening using a monospecific antiserum raised against a 14-kDa polypeptide found in the rat ileal cytosol. One clone of 516 bp encoded a 128-amino acid protein with a predicted molecular mass of 14,544 Da. The deduced amino acid sequence of 14-kDa I-BABP showed 100% homology to rat intestinal 15-kDa protein (I-15P) and 72% homology to porcine 15-kDa gastrotropin, whereas comparison of I-BABP to rat 14-kDa fatty acid-binding proteins of liver, intestine, and heart revealed homologies of 44%, 25%, and 28%, respectively. Northern blot analysis revealed a single transcript of approximately 0.5 kb in ileum and ovary; however, the abundance of I-BABP mRNA was much greater in ileum than in ovary. No transcript was seen in RNA extracted from stomach, jejunum, colon, liver, adrenal, brain, heart, kidney, or testis. Transfection of the I-BABP cDNA into COS-7 cells resulted in the expression of a 14-kDa protein that was identical to the ileal cytosolic I-BABP as determined by immunoblotting. Photoaffinity labeling of expressed 14-kDa protein was saturable with respect to increasing concentrations of 7,7-azo[3H]taurocholate (Km, 83.3 microM; Vmax, 6.7 pmol/mg per 5 min). Taurocholate inhibited 7,7-azotaurocholate labeling by > 96% with lesser inhibition by taurochenodeoxycholate (83.1%), chenodeoxycholate (74.6%), cholate (50.5%), and progesterone (38.5%), whereas oleic acid and estradiol did not inhibit binding.
Collapse
Affiliation(s)
- Y Z Gong
- Department of Medicine, Medical University of South Carolina, Charleston 29425
| | | | | | | | | |
Collapse
|
12
|
Petzinger E. Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. Rev Physiol Biochem Pharmacol 1994; 123:47-211. [PMID: 8209137 DOI: 10.1007/bfb0030903] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Petzinger
- Institute of Pharmacology and Toxicology, University Giessen, Germany
| |
Collapse
|
13
|
Veerkamp JH, van Kuppevelt TH, Maatman RG, Prinsen CF. Structural and functional aspects of cytosolic fatty acid-binding proteins. Prostaglandins Leukot Essent Fatty Acids 1993; 49:887-906. [PMID: 8140117 DOI: 10.1016/0952-3278(93)90174-u] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Dutta-Roy AK, Huang Y, Dunbar B, Trayhurn P. Purification and characterization of fatty acid-binding proteins from brown adipose tissue of the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1169:73-9. [PMID: 8334153 DOI: 10.1016/0005-2760(93)90084-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fatty acid-binding proteins (FABPs) have been identified and purified from interscapular brown adipose tissue of the rat. The proteins were characterized and their properties compared with the FABP present in white adipose tissue. FABP was purified to electrophoretic homogeneity from brown adipose tissue by a procedure involving precipitation with 70% ammonium sulphate, followed sequentially by ion-exchange chromatography and gel filtration chromatography. The purified fraction migrated as a single band on SDS-PAGE with an apparent molecular mass of 14,200. Scatchard analysis of [14C]oleate-binding to purified FABP gave a Kd value of approx. 0.80 +/- 0.02 microM and a maximal binding of 0.65 +/- 0.03 mol per mol of protein; these values were similar to that found with the FABP purified from white fat. The FABP concentration in brown adipose tissue was almost twice that of FABP in white adipose tissue. Fatty acid analysis of FABP from brown adipose tissue revealed that the intrinsic arachidonic acid content was proportionately higher than that present in FABP of white adipose tissue. Isoelectric focusing of delipidated FABP indicated that it existed with two charge isoforms (pI 6.85 and 7.35). The purified FABP additionally emerged in two peaks (FABP-I and FABP-II) from a reverse phase HPLC column. Amino acid analysis showed that Gly, Thr, and Ser residues in FABP-I were almost twice as high as in FABP-II. The N-terminals of both FABP-I and -II were not blocked. These components have been partially sequenced and showed a sequence homology only between 25-31 residues from the N-terminal. Further studies are required to elucidate the precise function of the two different isoforms of FABP in brown adipose tissue.
Collapse
Affiliation(s)
- A K Dutta-Roy
- Division of Biochemical Sciences, Rowett Research Institute, Aberdeen, UK
| | | | | | | |
Collapse
|
15
|
van der Horst DJ, van Doorn JM, Passier PC, Vork MM, Glatz JF. Role of fatty acid-binding protein in lipid metabolism of insect flight muscle. Mol Cell Biochem 1993; 123:145-52. [PMID: 8232256 DOI: 10.1007/bf01076486] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacyglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locusta flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP of Locusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for long-chain fatty acids (apparent dissociation constant Kd = 5.21 +/- 0.16 microM) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J van der Horst
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Atlasovich F, Santomé JA, Fernández HN. Photoreactive fatty acid analogues that bind to the rat liver fatty-acid binding protein: 11-(5'-azido-salicylamido)-undecanoic acid derivatives. Mol Cell Biochem 1993; 120:15-23. [PMID: 8459800 DOI: 10.1007/bf00925980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photoreactive probes for the hydrophobic pocket of the liver fatty acid-binding protein, 11-(5'-azido-salicylamido)-undecanoic acid (5' ASU) and its acetyl ester (Ac5' ASU), were synthesized and their interaction with the protein was assessed. Fatty acid-binding proteins are closely related proteins which are abundantly expressed in tissues with active lipid metabolism. A simple model that assumes that the protein possesses a single kind of sites fitted the binding of radioiodinated 5' ASU to L-FABP satisfactorily. The apparent dissociation constant, 1.34 x 10(-7) M, evidenced a slightly higher affinity than that reported for C16-C20 fatty acids. Consistent with the binding curve, 5' ASU effectively competed with palmitic acid for the hydrophobic sites and the effect was nearly complete for concentrations of 1 microM; oleic acid, in turn, displaced the radiolabelled probe. Irradiation at 366 nm of 125I-5' ASU bound to L-FABP caused the covalent cross-linking of the reagent. The amount of radioactivity covalently bound reached a maximum after 2 min thus agreeing with the photo-activation kinetics of the unlabelled compound that evidenced a t1/2 of 31.1 sec. The yield with which probes bound to L-FABP became covalently linked to the protein, appraised after SDS-PAGE of irradiated samples, was estimated as 23 and 26 per cent for 5' ASU and Ac5' ASU respectively. In turn, irradiation of L-FABP incubated with 5' ASU or Ac5' ASU resulted in the irreversible loss of about one fourth its ability to bind palmitic acid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Atlasovich
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Van Dessel G, Lagrou A, Hilderson HJ, Dierick W. The shuttling of dolichol between VLDL and HDL: involvement of a protein factor from lipoprotein-deficient human serum. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1166:64-72. [PMID: 8431493 DOI: 10.1016/0005-2760(93)90284-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The occurrence of a dolichol transfer factor in LPDS has been demonstrated using three different transfer assays. Applying a three step purification procedure, the transfer factor could be enriched 4000-5000-fold with a recovery of 1-2%. SDS-gel electrophoresis revealed a molecular weight of 64 kDa. Kinetics as well as the influence of a series of effectors were studied. Transfer was not accompanied by a concurrent esterification and the HDL3 subpopulation showed the highest acceptor capacity. The transfer factor also affected liposomal stability based on calcein fluorescence dequenching upon release. The characteristics of this dol-TP are discussed in view of these other plasma LTPs. Dol-TP might play a role in dolichol transfer from VLDL to HDL, observed in vivo.
Collapse
Affiliation(s)
- G Van Dessel
- Department of Medicine, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
18
|
Glatz JF, Vork MM, Cistola DP, van der Vusse GJ. Cytoplasmic fatty acid binding protein: significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukot Essent Fatty Acids 1993; 48:33-41. [PMID: 8424121 DOI: 10.1016/0952-3278(93)90007-j] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cellular transport of long-chain fatty acid moieties is thought to be mediated by a plasmalemmal and a cytoplasmic fatty acid binding protein (FABPPM and FABPC, respectively) and a cytoplasmic acyl-coenzyme A binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC exist and that these are found in a variety of tissues in remarkable abundance, with some cells containing more than one type In addition, liver type FABPC binds not only fatty acids, but also several other hydrophobic ligands, including heme, bilirubin, prostaglandin E1 and lipoxygenase metabolites of arachidonic acid. Calculations made for rat cardiomyocytes reveal that the presence of FABPC substantially enhances the cytoplasmic solubility as well as the maximal diffusional flux of fatty acids in these cells. Apart from this putative function in the bulk transport of ligands, FABPC may also function in the fine-tuning of cellular events by modulating the metabolism of hydrophobic compounds implicated in the regulation of cell growth and differentiation.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, University of Limburg, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
19
|
Galarza De Bo ER, Atlasovich FM, Ermacora MR, Torea JH, Pasquini JM, Santome JA, Soto EF. Rat brain fatty acid-binding protein during development. Neurochem Int 1992; 21:237-41. [PMID: 1303154 DOI: 10.1016/0197-0186(92)90153-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytosolic fatty acid-binding proteins (FABPs) have been described in rat and bovine whole brain. In the present study we investigated the distribution of FABP among white matter and gray matter as well as its changes during development. Fatty acid binding activity was similar in white and gray matter up to 40 days of age. In white matter it showed an age dependent increase thereafter, while in gray matter it remained constant throughout. Gel filtration (Sephadex G-75) of white matter cytosol of adult female rats resolved the fatty acid-binding activity in two peaks: A (Vo) and B (12-14 KDa; FABP). The specific binding activity in the FABP fraction was 10.4 pmol/micrograms of protein. The activity in peak A showed an age-dependent increase which paralleled myelin deposition. In contrast, the activity in the FABP fraction (peak B) remained undetectable up to 40 days of age, increasing thereafter. The differential distribution of cellular brain proteins with the capacity to bind fatty acids in gray matter and white matter suggests that this activity could be related to glial cells or to cell related structures such as myelin.
Collapse
Affiliation(s)
- E R Galarza De Bo
- Departamento de Quimica Biológica, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The gene for prosaposin was characterized by sequence analysis of chromosomal DNA to gain insight into the evolution of this locus that encodes four highly conserved sphingolipid activator proteins or saposins. The 13 exons ranged in size from 57 to 1200 bp, while the introns were from 91 to 3812 bp in length. The regions encoding saposins A, B, and D each had three exons, while that for saposin C had only two. This sequence included the regions that encode the carboxy terminus of the signal peptide, the four mature prosaposin proteins, and the 3' untranslated region. Primer extension studies indicated that over 99% of the coding sequence was contained in these 19,985 bp. Use of PCR and reverse PCR techniques indicated that the most 5' coding approximately 140 bp contained large introns and at least two small exons. Analyses of the intronic positions in the saposin regions indicated that this gene evolved from an ancestral gene by two duplication events and at least one gene rearrangement involving a double crossover after introns had been inserted into the gene.
Collapse
Affiliation(s)
- E G Rorman
- Department of Pediatrics, Mount Sinai School of Medicine, New York
| | | | | |
Collapse
|
21
|
Smith AF, Tsuchida K, Hanneman E, Suzuki TC, Wells MA. Isolation, characterization, and cDNA sequence of two fatty acid-binding proteins from the midgut of Manduca sexta larvae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48505-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Jones R, Hall L. A 23 kDa protein from rat sperm plasma membranes shows sequence similarity and phospholipid binding properties to a bovine brain cytosolic protein. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1080:78-82. [PMID: 1932083 DOI: 10.1016/0167-4838(91)90114-f] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 23 kDa protein that is a major component of rat epididymal secretions and sperm plasma membranes has been purified and partially sequenced. A data-base search revealed approximately 85% sequence similarity with a phosphatidyl-ethanolamine-binding protein from bovine brain cytosol. The rat 23 kDa protein also showed selective affinity for phosphatidylethanolamine (Kd = 1.6 x 10(-5) M) with lower activity towards phosphatidylinositol and phosphatidylcholine. It is suggested that differential affinity of protein antigens towards asymmetrically aligned phospholipids in sperm plasma membranes could account for their organisation into specific regional domains.
Collapse
Affiliation(s)
- R Jones
- Institute of Animal Physiology and Genetics Research, Cambridge Research Station, Babraham, U.K
| | | |
Collapse
|
23
|
Veerkamp JH, Peeters RA, Maatman RG. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:1-24. [PMID: 1991151 DOI: 10.1016/0005-2760(91)90244-c] [Citation(s) in RCA: 294] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
24
|
Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: current concepts and future directions. Mol Cell Biochem 1990; 98:237-51. [PMID: 2266965 DOI: 10.1007/bf00231390] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
At least three different proteins are implicated in the cellular transport of fatty acid moieties: a plasmalemmal membrane and a cytoplasmic fatty acid-binding protein (FABPPM and FABPC, respectively) and cytoplasmic acyl-CoA binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC are found in remarkable abundance in the cytoplasmic compartment of a variety of tissues. Although their mechanism of action is not yet fully elucidated, current knowledge suggests that the function of this set of proteins reaches beyond simply aiding cytoplasmic solubilization of hydrophobic ligands, but that they can be assigned several regulatory roles in cellular lipid homeostasis.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, University of Limburg, Maastricht, The Netherlands
| | | |
Collapse
|
25
|
Zanetti R, Catalá A. Interaction of fatty acid binding protein with microsomes: removal of palmitic acid and retinyl esters. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE ET DE BIOCHIMIE 1990; 98:173-7. [PMID: 1707613 DOI: 10.3109/13813459009113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[14C] palmitic acid or [3H] retinyl esters incorporated in microsomal membranes were removed by a cytosolic fraction enriched in fatty acid binding protein. When mouse liver cytosol was fractionated by 70% ammonium sulphate, a precipitate and a soluble fraction were obtained. The soluble fraction containing the fatty acid binding protein was able to remove from microsomal membranes, [14C] palmitic acid or [3H] retinyl esters, whereas the precipitate fraction had no removal capacity. Retinoid analysis indicated that 70% ammonium sulphate soluble fraction was enriched in endogenous retinyl esters with regard to cytosol or 70% ammonium sulphate precipitate fraction.
Collapse
Affiliation(s)
- R Zanetti
- Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
| | | |
Collapse
|
26
|
Grondin P, Vergnolle C, Chavant L, Kader JC. Purification and characterization of a novel phospholipid transfer protein from filamentous fungi. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1990; 22:93-8. [PMID: 2328823 DOI: 10.1016/0020-711x(90)90083-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. We have isolated from mycelia of Mucor mucedo, a filamentous fungus, a phospholipid transfer protein. 2. The purification steps were gel filtration, hydroxyapatite chromatography, blue affinity column and fast protein liquid chromatography on anion exchanger. 3. A purified protein was obtained with a molecular mass of 24 kDa and a pI of 5.05 and its N-terminal sequence was established. 4. This protein transfers phosphatidylinositol, as well as phosphatidylcholine and phosphatidylethanolamine.
Collapse
Affiliation(s)
- P Grondin
- Laboratoire de Cryptogamie, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
27
|
Paulussen RJ, Veerkamp JH. Intracellular fatty-acid-binding proteins. Characteristics and function. Subcell Biochem 1990; 16:175-226. [PMID: 2238003 DOI: 10.1007/978-1-4899-1621-1_7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R J Paulussen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Affiliation(s)
- R C Crain
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268
| |
Collapse
|
29
|
Kader JC. Intracellular transfer of phospholipids, galactolipids, and fatty acids in plant cells. Subcell Biochem 1990; 16:69-111. [PMID: 2238011 DOI: 10.1007/978-1-4899-1621-1_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J C Kader
- Laboratoire de Physiologie Cellulaire, Unité de Recherches Associée au CNRS 1180, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
30
|
de Grip WJ, Daemen FJ. Exchange of retinoids between lipid vesicles and rod outer segment membranes. Methods Enzymol 1990; 189:402-11. [PMID: 2292949 DOI: 10.1016/0076-6879(90)89314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|