1
|
Arkhipova V, Stolboushkina E, Kravchenko O, Kljashtorny V, Gabdulkhakov A, Garber M, Nikonov S, Märtens B, Bläsi U, Nikonov O. Binding of the 5'-Triphosphate End of mRNA to the γ-Subunit of Translation Initiation Factor 2 of the Crenarchaeon Sulfolobus solfataricus. J Mol Biol 2015; 427:3086-95. [PMID: 26244522 DOI: 10.1016/j.jmb.2015.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
The heterotrimeric archaeal IF2 orthologue of eukaryotic translation initiation factor 2 consists of the α-subunit, β-subunit and γ-subunit. Previous studies showed that the γ-subunit of aIF2, besides its central role in Met-tRNAi binding, has an additional function: it binds to the 5'-triphosphorylated end of mRNA and protects its 5'-part from degradation. Competition studies with nucleotides and mRNA, as well as structural and kinetic analyses of aIF2γ mutants, strongly implicate the canonical GTP/GDP-binding pocket in binding to the 5'-triphosphate end of mRNAs. The biological implication of these findings is being discussed.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Elena Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Olesya Kravchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Vladislav Kljashtorny
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Maria Garber
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Stanislav Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
| | - Birgit Märtens
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | - Oleg Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
2
|
Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. BIOCHEMISTRY (MOSCOW) 2011; 76:283-94. [PMID: 21568863 DOI: 10.1134/s0006297911030011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translation initiation factor 2 (IF2) is one of key components of the translation initiation system in living cells. In bacteria IF2 is a multidomain monomeric protein, while in eukaryotic and archaean cells e/aIF2 is heterotrimer (αβγ). Data, including our own, on eukaryotic type translation initiation factor 2 (e/aIF2) structure and functioning are presented. There are also new data on initiation factors eIF5 and eIF2B that directly interact with eIF2 and control its participation in nucleotide exchange.
Collapse
Affiliation(s)
- E A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
3
|
Rosenfeld AB, Racaniello VR. Components of the multifactor complex needed for internal initiation by the IRES of hepatitis C virus in Saccharomyces cerevisiae. RNA Biol 2010; 7:596-605. [PMID: 20935471 DOI: 10.4161/rna.7.5.13096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Interaction between the 40S ribosomal subunit and the IRES of hepatitis C virus (HCV) is thought to be independent of initiation proteins, while joining of the 60S ribosomal subunit, and initiation of translation is dependent upon components of the translation machinery. An established in vivo functional assay for internal initiation mediated by the HCV IRES was used to identify proteins needed for IRES dependent translation in Saccharomyces cerevisiae strains possessing alterations of the translation machinery. Internal initiation dependent upon the HCV IRES was abrogated in strains lacking eIF5B, and reduced in strains with altered eIF3, either lacking the Hcr1p subunit, a component of eIF3 not previously known to interact with HCV RNA, or possessing an amino acid change in the Rpg1p subunit. The HCV RNA-induced conformational change in the 40S subunit might affect positioning of eIF3 and lead to different interactions between the ribosome, eIF3, and the multifactor complex. HCV IRES dependent initiation was unaffected in strains in which the concentration of the initiating tRNA was reduced. Alteration of the δ subunit of eIF2B, which leads to inefficient recycling, or substitution of aspartic acid for serine 51 of eIF2α had no effect on internal initiation. Production of human Pkr inhibited HCV IRES dependent initiation in yeast. The synthesis of Pkr in yeast is known to result in high levels of eIF2α phosphorylation, increased Gcn4p synthesis, and reduced ribosomal protein production. These alterations may explain the effect of Pkr synthesis on HCV IRES dependent initiation in yeast.
Collapse
Affiliation(s)
- Amy B Rosenfeld
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, NY, USA.
| | | |
Collapse
|
4
|
Ben-Asouli Y, Banai Y, Hauser H, Kaempfer R. Recognition of 5'-terminal TAR structure in human immunodeficiency virus-1 mRNA by eukaryotic translation initiation factor 2. Nucleic Acids Res 2000; 28:1011-8. [PMID: 10648795 PMCID: PMC102579 DOI: 10.1093/nar/28.4.1011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1999] [Revised: 12/06/1999] [Accepted: 12/15/1999] [Indexed: 11/13/2022] Open
Abstract
TAR, a 59 nt 5'-terminal hairpin in human immuno-deficiency virus 1 (HIV-1) mRNA, binds viral Tat and several cellular proteins. We report that eukaryotic translation initiation factor 2 (eIF2) recognizes TAR. TAR and the AUG initiation codon domain, located well downstream from TAR, both contribute to the affinity of HIV-1 mRNA for eIF2. The affinity of TAR for eIF2 was insensitive to lower stem mutations that modify sequence and structure or to sequence changes throughout the remainder that leave the TAR secondary structure intact. Hence, eIF2 recognizes structure rather than sequence in TAR. The affinity for eIF2 was severely reduced by a 3 nt change that converts the single A bulge into a 7 nt internal loop. T1 footprinting showed that eIF2 protects nucleotides in the loop as well as in the strand opposite the A bulge. Thus, eIF2 recognizes the TAR loop and lower part of the sub-apical stem. Though not contiguous, these regions are brought into proximity in TAR by a bend in the helical structure induced by the UCU bulge; binding of eIF2 opens up the bulge context and apical stem. The ability to bind eIF2 suggests a function for TAR in HIV-1 mRNA translation. Indeed, the 3 nt change that reduces the affinity of TAR for eIF2 impairs the ability of reporter mRNA to compete in translation. Interaction of TAR with eIF2 thus allows HIV-1 mRNA to compete more effectively during protein synthesis.
Collapse
Affiliation(s)
- Y Ben-Asouli
- Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
5
|
Laurino JP, Thompson GM, Pacheco E, Castilho BA. The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol Cell Biol 1999; 19:173-81. [PMID: 9858542 PMCID: PMC83876 DOI: 10.1128/mcb.19.1.173] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) has been implicated in the selection of the AUG codon as the start site for eukaryotic translation initiation, since mutations in its three subunits in yeast that allow the recognition of a UUG codon by the anticodon of the initiator Met-tRNAMet have been identified. All such mutations in the beta subunit of eIF2 (eIF2beta) mapped to a region containing a putative zinc finger structure of the C2-C2 type, indicating that these sequences could be involved in RNA recognition. Another feature of eIF2beta that could mediate an interaction with RNA is located in the amino-terminal sequences and is composed of three repeats of seven lysine residues which are highly conserved in other species. We show here the ability of eIF2beta, purified from Escherichia coli as a fusion to glutathione S-transferase, to bind mRNA in vitro. Through a deletion analysis, mRNA binding was found to be dependent on the lysine repeats and a region encompassing the C2-C2 motif. Strong mRNA binding in vitro could be maintained by the presence of only one lysine or one arginine run but not one alanine run. We further show that only one run of lysine residues is sufficient for the in vivo function of eIF2beta, probably through charge interaction, since its replacement by arginines did not impair cell viability, whereas substitution for alanines resulted in inviable cells. mRNA binding, but not GTP-dependent initiator Met-tRNAMet binding, by the eIF2 complex was determined to be dependent on the presence of the lysine runs of the beta subunit.
Collapse
Affiliation(s)
- J P Laurino
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, São Paulo 04023-062, Brazil
| | | | | | | |
Collapse
|
6
|
Abstract
The study of the regulation of initiation of protein synthesis has recently gained momentum because of the established relationship between translation initiation, cell growth and tumorigenesis. Therefore much effort is devoted to the role of protein kinases which are activated in signal transduction cascades and which are responsible for the phosphorylation of a number of initiation factors. These specific factors are mainly involved in the binding of messenger RNA to the 40S ribosome, a process that makes the unwinding of the 5' untranslated region necessary. It appears that the phosphorylation of these factors increases their ability for cap recognition and helicase activity. The enhanced phosphorylation of the messenger binding factors results not only in an overall stimulation of translation, but especially weak messengers are positively discriminated. The above mechanisms mainly deal with qualitative control of translation, i.e., messenger selection, but phosphorylation also plays a role in quantitative regulation of protein synthesis. The generation of active eIF-2, the initiation factor that binds the Met-tRNA(i) and GTP, is dependent on a factor involved in the GDP-GTP exchange. Phosphorylation of eIF-2 results in sequestration of the exchange factor and a slowing down of the rate of initiation.
Collapse
Affiliation(s)
- H O Voorma
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
7
|
Gaspar N, Kinzy T, Scherer B, Hümbelin M, Hershey J, Merrick W. Translation initiation factor eIF-2. Cloning and expression of the human cDNA encoding the gamma-subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41878-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Flynn A, Oldfield S, Proud CG. The role of the beta-subunit of initiation factor eIF-2 in initiation complex formation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1174:117-21. [PMID: 8334162 DOI: 10.1016/0167-4781(93)90105-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The functional properties of preparations of protein synthesis initiation factor eIF-2 which lack the beta-subunit (as confirmed immunologically) were compared with those of the heterotrimeric factor. The former can bind guanine nucleotides but not initiator tRNA, and also exhibits a substantially reduced rate of initiation factor eIF-2B-mediated GDP/GTP-exchange.
Collapse
Affiliation(s)
- A Flynn
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| | | | | |
Collapse
|