1
|
Mahilkar A, Venkataraman P, Mall A, Saini S. Experimental Evolution of Anticipatory Regulation in Escherichia coli. Front Microbiol 2022; 12:796228. [PMID: 35087497 PMCID: PMC8787300 DOI: 10.3389/fmicb.2021.796228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akshat Mall
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Wimberly BT, White SW, Ramakrishnan V. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure 1997; 5:1187-98. [PMID: 9331418 DOI: 10.1016/s0969-2126(97)00269-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ribosomal protein S7, a crucial RNA-binding component of the ribosome, is one of two proteins that initiates assembly of the 30S ribosomal subunit. It is required for proper folding of a large 3' domain of 16S ribosomal RNA. S7 regulates its own synthesis by binding to its own mRNA. This ability of S7 to bind both messenger and ribosomal RNAs makes determination of its mode of RNA recognition particularly interesting. RESULTS The crystal structure of S7 from Thermus thermophilus was determined by a two-wavelength anomalous diffraction experiment using the LIII edge of mercury. The S7 structure consists of a bundle of six helices and an extended beta hairpin between helices 3 and 4, with two or more RNA-binding sites on its surface. The hairpin, along with portions of helices 1, 4 and 6, forms a large, positively charged, concave surface that has the appropriate curvature and dimensions to bind double-stranded RNA. A second putative RNA-binding site comprises parts of loop 2 and the helix 4-loop 5 turn. CONCLUSIONS Structural similarity between S7 and the IHF/HU family of proteins strongly suggests that the beta hairpin of S7 binds to a groove of double-stranded RNA. The beta hairpin of S7 is also similar to those from other nucleic acid binding proteins, such as ribosomal protein L14 and BIV Tat, suggesting that it belongs to an extended family of such motifs, all of which bind to a groove of double-stranded nucleic acid. The residues in S7 loop 2 that belong to the second putative RNA-binding site may have a role analogous to the N-terminal residues of IHF/HU which grip an unbent portion of double helix.
Collapse
Affiliation(s)
- B T Wimberly
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | |
Collapse
|
3
|
Mueller F, Stark H, van Heel M, Rinke-Appel J, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol 1997; 271:566-87. [PMID: 9281426 DOI: 10.1006/jmbi.1997.1212] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the incoming mRNA passes through the well-defined "hole" at the head-body junction of the 30 S subunit.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | |
Collapse
|
4
|
Kaloyanova D, Xu J, Ivanov IG, Abouhaidar MG. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:10-4. [PMID: 9310353 DOI: 10.1111/j.1432-1033.1997.00010.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-Shine-Dalgamo translational initiator is identified in Escherichia coli. The nucleotide sequence ACCUACUCGAGUUAG, designated as PL, is capable of initiating translation of pokeweed antiviral protein (PAP) and human calcitonin (hCT) mRNAs in E. coli cells. The yield of recombinant protein was double that obtained with the consensus Shine-Dalgarno-sequence-(SD)-driven translation. The PL sequence is composed of two heptanucleotides (ACCUACU, box I and GAGUUAG, box II) which are complementary to nucleotides 1434-1440 and 507-513, respectively, in 16S rRNA. Mutational analysis shows that the translation initiation efficiency with either box alone is much lower than that obtained with the entire PL sequence, indicating that the boxes interact simultaneously with both complementary regions in 16S rRNA during the translation initiation step. Based on these results, we propose that the two widely separated regions 507-513 (part of helical domain 18) and 1434-1440 (belonging to helical domain 44) are organized in close proximity to each other and to the ribosome decoding center on the surface of the E. coli 30S ribosomal subunit.
Collapse
MESH Headings
- Base Sequence
- Calcitonin/biosynthesis
- Calcitonin/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Humans
- Molecular Sequence Data
- N-Glycosyl Hydrolases
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Ribosome Inactivating Proteins, Type 1
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
5
|
Golshani A, Golomehova V, Mironova R, Ivanov IG, AbouHaidar MG. Does the epsilon sequence of phage T7 function as an initiator for the translation of CAT mRNA in Escherichia coli? Biochem Biophys Res Commun 1997; 236:253-6. [PMID: 9240419 DOI: 10.1006/bbrc.1997.6842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epsilon (epsilon) sequence [UUAACUUUA, complementary to nucleotides 458-466 of the 16S ribosomal RNA (rRNA)] which is naturally occurring at the 5'-untranslated leader of phage T7 gene 10 mRNA was originally described as a powerful translational enhancer in Escherichia coli. Recent studies with this sequence led to controversial conclusions about its translational initiation and enhancing capability. In this study different sequence derivatives of epsilon were constructed to evaluate its efficiency not only to enhance translation of the chloramphenicol acetyltransferase (CAT) mRNA in E. coli, but also to function as an independent initiator of translation. It was observed that the epsilon sequence in combination with the CAT natural Shine-Dalgarno (SDn) or the SD consensus sequences enhanced, as expected, the translation of CAT mRNA. The natural epsilon sequence without an SD sequence failed to initiate or enhance the translation of CAT mRNA. However, when the complementarity of epsilon to 16S rRNA was increased from 9 to 16 nucleotides, epsilon alone (without the SD sequence) became an independent translational initiator with an efficiency of about 80% that obtained with the SD consensus sequence.
Collapse
Affiliation(s)
- A Golshani
- Department of Botany, Virology Group, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Melander Y, Holmberg L, Nygârd O. Structure of 18 S ribosomal RNA in native 40 S ribosomal subunits. J Biol Chem 1997; 272:3254-8. [PMID: 9013562 DOI: 10.1074/jbc.272.6.3254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have analyzed the structure of 18 S rRNA in native 40 S subunits using chemical modification followed by primer extension. The native subunits were modified using the single-stranded specific reagents dimethyl sulfate and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate. The modification pattern of the 18 S rRNA was compared to that obtained from derived 40 S subunits prepared by dissociation of unprogrammed 80 S ribosomes. Eighteen nucleotides showed different accessibility to the chemical probes in derived and native subunits. Half of these nucleotides were found in the central domain of the rRNA between the 1060 loop and the central pseudoknot. The remaining nucleotides were located in two clusters in the 5'- and 3'-domains of the 18 S rRNA. Derived 40 S subunits are free from non-ribosomal proteins. In contrast, native subunits are intermediates in protein synthesis initiation and contain stoichiometric amounts of initiation factor 3 (Sundkvist, I. C., and Staehelin, T. (1975) J. Mol. Biol. 99, 401-418). The possible role of this factor in altering the structure of 18 S rRNA in the native 40 S subunits is discussed.
Collapse
Affiliation(s)
- Y Melander
- Department of Zoological Cell Biology, Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences E5, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Heilek GM, Noller HF. Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 1996; 272:1659-62. [PMID: 8658142 DOI: 10.1126/science.272.5268.1659] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cysteine residues were introduced into three different positions distributed on the surface of ribosomal protein S5, to serve as targets for derivatization with an Fe(II)-ethyl-enediaminetetraacetic acid linker. Hydroxyl radicals generated locally from the tethered Fe(II) in intermediate ribonucleoprotein particles or in 30S ribosomal subunits reconstituted from derivatized S5 caused cleavage of the RNA, resulting in characteristically different cleavage patterns for the three different tethering positions. These findings provide constraints for the three-dimensional folding of 16S ribosomal RNA (rRNA) and for the orientation of S5 in the 30S subunit, and they further suggest that antibiotic resistance and accuracy mutations in S5 may involve perturbation of 16S rRNA.
Collapse
Affiliation(s)
- G M Heilek
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
8
|
Verschoor A, Srivastava S, Grassucci R, Frank J. Native 3D structure of eukaryotic 80s ribosome: morphological homology with E. coli 70S ribosome. J Biophys Biochem Cytol 1996; 133:495-505. [PMID: 8636226 PMCID: PMC2120811 DOI: 10.1083/jcb.133.3.495] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A three-dimensional reconstruction of the eukaryotic 80S monosome from a frozen-hydrated electron microscopic preparation reveals the native structure of this macromolecular complex. The new structure, at 38A resolution, shows a marked resemblance to the structure determined for the E. coli 70S ribosome (Frank, J., A. Verschoor, Y. Li, J. Zhu, R.K. Lata, M. Radermacher, P. Penczek, R. Grassucci, R.K. Agrawal, and Srivastava. 1996b. In press; Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava ., A. Verschoor, M. Radermacher, R. Grassucci, R.K. Lata, and R. Agrawal. 1995. Nature (Lond.).376:441-444.) limited to a comparable resolution, but with a number of eukaryotic elaborations superimposed. Although considerably greater size and intricacy of the features is seen in the morphology of the large subunit (60S vs 50S), the most striking differences are in the small subunit morphology (40S vs 30S): the extended beak and crest features of the head, the back lobes, and the feet. However, the structure underlying these extra features appears to be remarkably similar in form to the 30S portion of the 70S structure. The intersubunit space also appears to be strongly conserved, as might be expected from the degree of functional conservation of the ribosome among kingdoms (Eukarya, Eubacteria, and Archaea). The internal organization of the 80S structure appears as an armature or core of high-density material for each subunit, with the two cores linked by a single bridge between the platform region of the 40S subunit and the region below the presumed peptidyltransferase center of the 60S subunit. This may be equated with a close contact of the 18S and 28S rRNAs in the translational domain centered on the upper subunit:subunit interface.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/ultrastructure
- Crystallography
- Escherichia coli/chemistry
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Molecular Weight
- Protein Biosynthesis
- Protein Conformation
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/ultrastructure
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Ribosomes/chemistry
- Ribosomes/ultrastructure
- Triticum/chemistry
Collapse
Affiliation(s)
- A Verschoor
- Wadsworth Center, New York State Department of Health 12201-0509, USA.
| | | | | | | |
Collapse
|
9
|
Ramakrishnan V, Davies C, Gerchman SE, Golden BL, Hoffmann DW, Jaishree TN, Kyila JH, Porter S, White SW. Structures of prokaryotic ribosomal proteins: implications for RNA binding and evolution. Biochem Cell Biol 1995; 73:979-86. [PMID: 8722013 DOI: 10.1139/o95-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
After a long hiatus, the pace of determination of the structures of ribosomal proteins has accelerated dramatically. We discuss here the structures of five ribosomal proteins from Bacillus stearothermophilus: S5, S17, L6, L9, and L14. These structures represent several new motifs. Each of these structures has revealed new insights, and we have developed criteria for recognizing RNA-binding regions of each protein and correlating the structures with such properties as antibiotic resistance. The information here should also prove invaluable in an eventual high-resolution picture of the intact ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brakier-Gingras L, Pinard R, Dragon F. Pleiotropic effects of mutations at positions 13 and 914 in Escherichia coli 16S ribosomal RNA. Biochem Cell Biol 1995; 73:907-13. [PMID: 8722006 DOI: 10.1139/o95-098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations at position 13 or 914 of Escherichia coli 16S ribosomal RNA exert pleiotropic effects on protein synthesis. They interfere with the binding of streptomycin, a translational miscoding drug, to the ribosomes. They increase translational fidelity, and this effect can be related to a perturbation of the higher order structure of the 530 stem-loop, a key region for tRNA selection. In contrast, the structure of the decoding center is not perturbed. The mutations also affect translational initiation, slowing down the formation of the 30S initiation complex. This effect can be related to a destabilization of the pseudoknot helix (17-19/916-918), at the convergence of the three major domains of 16S ribosomal RNA.
Collapse
|
11
|
|
12
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
13
|
Abstract
Finding answers to the many open questions concerning the mechanism and control of prokaryotic translation remains one of the central challenges of molecular biology. In fact, recent experimental data even force us to reconsider aspects that were previously thought to be established fact. Here, we attempt a synthesis of new and not-so-new information, which leads to a revised and testable working hypothesis for translational initiation.
Collapse
Affiliation(s)
- J E McCarthy
- Department of Gene Expression, Gesellschaft Für Biotechnologische Forschung, Braunschweig, Germany
| | | |
Collapse
|
14
|
Alexander RW, Muralikrishna P, Cooperman BS. Ribosomal components neighboring the conserved 518-533 loop of 16S rRNA in 30S subunits. Biochemistry 1994; 33:12109-18. [PMID: 7918432 DOI: 10.1021/bi00206a014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe complementary to 16S rRNA nucleotides 518-526 and its exploitation in identifying 30S ribosomal subunit components neighboring its target site in 16S rRNA. Nucleotides 518-526 lie within an almost universally conserved single-stranded loop that has been linked to the decoding region of Escherichia coli ribosomes. On photolysis in the presence of activated 30S ribosomes, the probe site-specifically incorporates into proteins S3, S4, S7, and S12 (identified by SDS-PAGE, RP-HPLC, and immunological analysis); nucleotides C525, C526, and G527 adjacent to its target binding site; and the 3'-terminus of 16S rRNA. When the probe is photoincorporated into 30S subunits subjected to brief cold inactivation (SI subunits), S7 labeling is increased compared to activated subunit incorporation, while S3, S4, and S12 labeling is decreased, as is labeling to nucleotides C525, C526, and G527; labeling at the 16S rRNA 3'-terminus appears unchanged. Longer cold inactivation of the 30S subunits (LI subunits) leads to decreases in the labeling of all components. These results provide clear evidence that C526 lies within 24 A (the distance between C526 and the photogenerated nitrene) of proteins S3, S4, S7, and S12 and the 3'-terminus of 16S rRNA. The identity of the tryptic digestion patterns of S7 labeled with the probe complementary to 16S rRNA nucleotides 518-526 and with a probe complementary to nucleotides 1397-1405 [Muralikrishna, P., & Cooperman, B. S. (1994) Biochemistry 33, 1392-1398] also provides evidence for proximity between C526 and G1405. Our results support the conclusion of Dontsova et al. [Dontsova, O., et al. (1992) EMBO J. 11, 3105-3116] in placing the 530 loop in close proximity to the decoding center of the 30S subunit but are apparently inconsistent with some protein-protein distances determined by neutron diffraction [Capel, M. S., et al. (1988) J. Mol. Biol. 200, 65-87]. This inconsistency suggests that a multistate model of subunit conformation may be required to account for the totality of results pertaining to the internal structure of the 30S subunit.
Collapse
Affiliation(s)
- R W Alexander
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323
| | | | | |
Collapse
|
15
|
Bischof O, Kruft V, Wittmann-Liebold B. Analysis of the puromycin binding site in the 70 S ribosome of Escherichia coli at the peptide level. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32308-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Abstract
One of three mRNA codons--UAA, UAG and UGA--is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacterium Escherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.
Collapse
Affiliation(s)
- M F Tuite
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
17
|
Laughrea M. Structural dynamics of translating ribosomes: 16S ribosomal RNA bases that may move twice during translocation. Mol Microbiol 1994; 11:999-1007. [PMID: 8022290 DOI: 10.1111/j.1365-2958.1994.tb00378.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent footprinting, sedimentation and neutron-scattering results obtained in vivo or on pre-translocation and post-translocation ribosomal complexes are integrated with cross-linking and immunoelectron microscopy information. It is proposed that the 30S subunit pulses during translocation and that its pre- and post-translocation structures are not necessarily identical. Accordingly, translocation is characterized by three consecutive conformational states of the 30S and 50S subunits. State 1 (the pre-translocation state) lasts until the elongation factor EF-G.GTP complex binds to the ribosome or adopts the GTPase conformation. State 2 (the translocation state, or the peak or plateau of the pulse) follows and lasts until EF-G adopts a subsequent conformation or is released from the ribosome. State 3 (the post-translocation state) ensues and lasts until A (aminoacyl) site binding of aminoacyl-tRNA. In state 2, 16S RNA hairpins 26 and 33-33A, located in the platform and the head of the 30S subunit, respectively, become kinked or twisted, and residue A1503, near the decoding site, becomes exposed. A platform twist is associated with P (peptide) to E (exit) site tRNA movements and a head twist with pivoting of the peptidyl-tRNA elbow from the A to the P site, around a (retractable?) S19 domain. These twists result in an unlocking of the platform and the head from the 50S subunit. Exposure of A1503 is tentatively associated with movements of mRNA or tRNA anticodon stem-loops. These twisted or otherwise-exposed residues readopt their previous setting upon completion of translocation, i.e. states 1 and 3 of 16S RNA differ more from state 2 than from each other.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Laughrea
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Pinard R, Côté M, Payant C, Brakier-Gingras L. Positions 13 and 914 in Escherichia coli 16S ribosomal RNA are involved in the control of translational accuracy. Nucleic Acids Res 1994; 22:619-24. [PMID: 7510397 PMCID: PMC307852 DOI: 10.1093/nar/22.4.619] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using a conditional expression system with the temperature-inducible lambda PL promoter, we previously showed that the single mutations 13U-->A and 914A-->U, and the double mutation 13U-->A and 914A-->U in Escherichia coli 16S ribosomal RNA impair the binding of streptomycin (Pinard et al., The FASEB Journal, 1993, 7, 173-176). In this study, we found that the two single mutations and the double mutation increase translational fidelity, reducing in vivo readthrough of nonsense codons and frameshifting, and decreasing in vitro misincorporation in a poly(U)-directed system. Using oligodeoxyribonucleotide probes which hybridize to the 530 loop and to the 1400 region of 16S rRNA, two regions involved in the control of tRNA binding to the A site, we observed that the mutations in rRNA increase the binding of the probe to the 530 loop but not to the 1400 region. We suggest that the mutations at positions 13 and 914 of 16S rRNA induce a conformational rearrangement in the 530 loop, which contributes to the increased accuracy of the ribosome.
Collapse
Affiliation(s)
- R Pinard
- Département de Biochimie, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Powers T, Noller HF. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J Mol Biol 1994; 235:156-72. [PMID: 8289238 DOI: 10.1016/s0022-2836(05)80023-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that a concise set of universally conserved bases in 16 S rRNA are strongly protected from attack by chemical probes when tRNA is bound specifically to the ribosomal A site. Two of these bases, A1492 and A1493, are located in the cleft of the 30 S subunit, the site of codon-anticodon interaction. A third residue, G530, is located within the highly conserved 530 stem-loop, a region that is involved in interactions with proteins S4 and S12, mutations in which perturb the translational error frequency. The 530 loop is also thought to be located at or near the site of interaction of elongation factor Tu on the 30 S subunit, a location that is distinct from the decoding site. This study monitors the response of these two A-site-related regions of 16 S rRNA to a variety of translational miscoding agents. Several of these agents, including streptomycin, neomycin and ethanol, selectively potentiate tRNA-dependent protection of residue G530 from kethoxal modification; in contrast, little change in reactivity of residues A1492 and A1493 is observed. These results are consistent with the previously demonstrated importance of G530 for A-site function and, moreover, suggest a common mechanism of action for these miscoding agents, even though they appear to have distinctly different modes of interaction with 16 S rRNA. In contrast to the miscoding agents, we find that a streptomycin-dependence (SmD) mutation in protein S12, which causes ribosomes to be hyperaccurate, antagonizes tRNA-dependent protection of G530. The possibility that 5' or 3' flanking regions of mRNA could be involved in tRNA-dependent protection of G530 was tested by using different lengths of oligo(U) to promote binding of tRNA(Phe) to the A site. The relative levels of protection of G530, A1492 and A1493 were unchanged as the size of the mRNA fragment was decreased from 16 to 6 bases in length. We conclude, therefore, that for protection of G530 to be the result of direct contact with message, it must necessarily be located directly at the decoding site; otherwise, its protection is best explained by allosteric interactions, either with mRNA, or with the codon-anticodon complex. These results are discussed in terms of a model wherein the conformation of the 530 loop is correlated with the affinity of the ribosome for elongation factor Tu.
Collapse
Affiliation(s)
- T Powers
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
20
|
Brown CM, McCaughan KK, Tate WP. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res 1993; 21:2109-15. [PMID: 8502551 PMCID: PMC309472 DOI: 10.1093/nar/21.9.2109] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two regions of the 16S rRNA, helix 34, and the aminoacyl site component of the decoding site at the base of helix 44, have been implicated in decoding of translational stop signals during the termination of protein synthesis. Antibiotics specific for these regions have been tested to see how they discriminate the decoding of UAA, UAG, and UGA by the two polypeptide chain release factors (RF-1 and RF-2). Spectinomycin, which interacts with helix 34, stimulated RF-1 dependent binding to the ribosome and termination. It also stimulated UGA dependent RF-2 termination at micromolar concentrations but inhibited UGA dependent RF-2 binding at higher concentrations. Alterations at position C1192 of helix 34, known to confer spectinomycin resistance, reduced the binding of f[3H]Met-tRNA to the peptidyl-tRNA site. They also impaired termination in vitro, with both factors and all three stop codons, although the effect was greater with RF-2 mediated reactions. These alterations had previously been shown to inhibit EF-G mediated translocation. As perturbations in helix 34 effect both termination and elongation reactions, these results indicate that helix 34 is close to the decoding site on the bacterial ribosome. Several antibiotics, hygromycin, neomycin and tetracycline, specific for the aminoacyl site, were shown to inhibit the binding and function of both RFs in termination with all three stop codons in vitro. These studies indicate that decoding of all stop signals is likely to occur at a similar site on the ribosome to the decoding of sense codons, the aminoacyl site, and are consistent with a location for helix 34 near this site.
Collapse
Affiliation(s)
- C M Brown
- Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
21
|
Pel HJ, Maat C, Rep M, Grivell LA. The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res 1992; 20:6339-46. [PMID: 1475194 PMCID: PMC334525 DOI: 10.1093/nar/20.23.6339] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report the molecular cloning, sequencing and genetic characterization of the first gene encoding an organellar polypeptide chain release factor, the MRF1 gene of the yeast Saccharomyces cerevisiae. The MRF1 gene was cloned by genetic complementation of a respiratory deficient mutant disturbed in the expression of the mitochondrial genes encoding cytochrome c oxidase subunit 1 and 2, COX1 and COX2. For COX1 this defect has been attributed to an impaired processing of several introns. Sequence analysis of the MRF1 gene revealed that it encodes a protein highly similar to prokaryotic peptide chain release factors, especially RF-1. Disruption of the gene results in a high instability of the mitochondrial genome, a hallmark for a strict lesion in mitochondrial protein synthesis. The respiratory negative phenotype of mrf1 mutants lacking all known mitochondrial introns and the reduced synthesis of mitochondrial translation products encoded by unsplit genes confirm a primary defect in mitochondrial protein synthesis. Over-expression of the MRF1 gene in a mitochondrial nonsense suppressor strain reduces suppression in a dosage-dependent manner, shedding new light on the role of the '530 region' of 16S-like ribosomal RNA in translational fidelity.
Collapse
Affiliation(s)
- H J Pel
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Brandt R, Gualerzi CO. Ribosomal localization of the mRNA in the 30S initiation complex as revealed by UV crosslinking. FEBS Lett 1992; 311:199-202. [PMID: 1397315 DOI: 10.1016/0014-5793(92)81101-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translation initiation complexes consisting of 30S ribosomal subunits, 32P-labelled mRNA (002 mRNA), fMet-tRNA and the three initiation factors were subjected to UV-crosslinking to determine the protein and rRNA neighbors of the bound mRNA by immunochemical methods and by nucleic acid hybridization techniques. The mRNA was found to be crosslinked to a specific region of the 16S rRNA spanning from nucleotide 418 to 615 and to ribosomal proteins S1 and S21 (the main targets), S3, S10, S12 and S14; a low level of crosslinking was also detected with S2, S7, S13, S18 and S19.
Collapse
Affiliation(s)
- R Brandt
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|