1
|
Kilanczyk E, Saraswat Ohri S, Whittemore SR, Hetman M. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione. ASN Neuro 2016; 8:8/4/1759091416660404. [PMID: 27449129 PMCID: PMC4962338 DOI: 10.1177/1759091416660404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023] Open
Abstract
The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter.
Collapse
Affiliation(s)
- Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA Department of Pharmacology and Toxicology, University of Louisville, KY, USA
| |
Collapse
|
2
|
Carpenter KLH, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci 2015; 9:112. [PMID: 25904838 PMCID: PMC4389375 DOI: 10.3389/fnins.2015.00112] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of (13)C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with (13)C NMR analysis, revealed (13)C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome.
Collapse
Affiliation(s)
- Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK ; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| |
Collapse
|
3
|
Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. J Cereb Blood Flow Metab 2015; 35:111-20. [PMID: 25335801 PMCID: PMC4294402 DOI: 10.1038/jcbfm.2014.177] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/16/2014] [Accepted: 09/08/2014] [Indexed: 02/02/2023]
Abstract
Increased 'anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-(13)C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. (13)C enrichment for glycolytic 2,3-(13)C2 lactate was the median 5.4% (interquartile range (IQR) 4.6-7.5%) in TBI brain and 4.2% (2.4-4.4%) in 'normal' brain (P<0.01). The ratio of PPP-derived 3-(13)C lactate to glycolytic 2,3-(13)C2 lactate was median 4.9% (3.6-8.2%) in TBI brain and 6.7% (6.3-8.9%) in 'normal' brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 (r=-0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than 'normal' brain. Several TBI patients exhibited PPP-lactate elevation above the 'normal' range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain.
Collapse
|
4
|
The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 2014; 34:724-34. [PMID: 24496178 PMCID: PMC3982102 DOI: 10.1038/jcbfm.2014.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-(13)C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using (1)H- and (13)C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.
Collapse
|
5
|
Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 2013; 126:763-80. [PMID: 24005892 DOI: 10.1007/s00401-013-1173-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/14/2013] [Accepted: 08/25/2013] [Indexed: 12/12/2022]
Abstract
Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.
Collapse
|
6
|
Saggu S, Kumar R. Possible mechanism of adaptogenic activity of seabuckthorn (Hippophae rhamnoides) during exposure to cold, hypoxia and restraint (C–H–R) stress induced hypothermia and post stress recovery in rats. Food Chem Toxicol 2007; 45:2426-33. [PMID: 17673345 DOI: 10.1016/j.fct.2007.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 11/30/2022]
Abstract
The present study was carried out to investigate mechanism of adaptogenic activity of seabuckthorn dry leaves aqueous lyophilized extract, administered in rats at a dose of 100 mg/kg body weight prior to cold (5 degrees C)-hypoxia (428 mmHg)-restraint (C-H-R) exposure up to fall of T(rec) 23 degrees C and recovery (T(rec) 37 degrees C) from C-H-R induced hypothermia. The effect of extract treatment was studied on key metabolic regulatory enzymes in blood, liver and muscle and tissue glycogen in rats on attaining T(rec) 23 degrees C and post stress recovery of T(rec) 37 degrees C. In control rats during C-H-R exposure on attaining T(rec) 23 degrees C there was significant decrease in enzyme activities of blood hexokinase (HK), citrate synthase (CS) and glucose-6-phosphate dehydrogenase (G-6-PD); liver CS; and in muscle glycogen, and CS and G-6-PD activities. In control rats on recovery of T(rec) 37 degrees C there was also a significant decrease in liver and muscle glycogen levels along with decreased enzyme activities of blood G-6-PD; liver CS; and liver and muscle G-6-PD. This suggested that during severe stressful exposure to C-H-R and post stress recovery the aerobic metabolism as well as hexose monophosphate (HMP) pathway is suppressed. The single and five doses extract treatment restricted the decrease or better maintained tissue glycogen and enzyme activities, viz. HK, phosphofructokinase (PFK), CS and G-6-PD, in blood, liver and muscle, during C-H-R exposure (T(rec) 23 degrees C) and recovery of T(rec) 37 degrees C. The results suggest that seabuckthorn extract treatment caused a trend for shifting anaerobic metabolism to aerobic during C-H-R exposure and post stress recovery.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Biochemical Pharmacology, Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi 110054, India.
| | | |
Collapse
|
7
|
Kaspler P. Effect of cadmium and zinc salts on energy metabolism and survival of Unio tumidus Philipsson. J Basic Clin Physiol Pharmacol 1999; 10:57-72. [PMID: 10392316 DOI: 10.1515/jbcpp.1999.10.1.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Energy metabolism of aquatic invertebrates is one of the most important targets of environmental pollutants, in particular, heavy metals. In this study, we determined changes in survival, oxygen uptake and hepato-pancreas glycogen level of the bivalve mollusk Unio tumidus Philipsson following chronic exposure of Cd and Zn salts (chlorides and sulfates). The concentrations of Cd salts were equal to 0.001, 0.01 and 0.1 mg/l and concentrations of Zn salts were equal to 0.01, 0.1, 1.0 mg/l (maximal contamination level for Cd is 0.005 mg/l and for Zn is 0.01 mg/l). Survival was registered daily whereas oxygen consumption and glycogen level were determined on days 3, 7 and 14. Changes in survival of U. tumidus along the course of Cd and Zn salt concentrations was not monotonic; the sulfates were more inhibitory than the chlorides. No correlation was found between changes in survival and changes in the oxygen uptake and the glycogen level. By analysis of data in the literature, it was possible to construct a general scheme of adaptation of aquatic invertebrates' energy metabolism to heavy metals impact: (1) "exhaustive" or "economical" activation of aerobic metabolism (with or without depletion of energy resources); (2) change to "exhaustive" anaerobic mechanism (with depletion of glycogen); (3) change to "economical" anaerobic metabolism (involving mechanisms of glycogen expenditure economy); (4) late-term activation of aerobic metabolism due to need for binding and excretion of accumulated metals. Different severity of the pollutants' impact may lead to prevalence of different stages of this scheme. Our results revealed most of these stages in U. tumidus: "economical" activation of aerobic metabolism, change to "exhaustive" and "economical" anaerobic metabolism, and late-term activation of aerobic metabolism. It can be suggested that Cd is more toxic due to late-term decrease in oxygen consumption whereas Zn resulted only in transient early-term decrease. On the other hand, mechanisms of glycogen economy during anaerobic metabolism were involved in the effect of Cd and not involved in the effect of Zn. Concerning the effect of anions, chlorides promoted transient activation of aerobic metabolism, while sulfates promoted the passage to anaerobic metabolism. Thus, the effect of sulfates seems to be more inhibitory than the effect of chlorides.
Collapse
Affiliation(s)
- P Kaspler
- Department of Physiology, Hadassah School of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
8
|
Choi KT, Illievich UM, Zornow MH, Scheller MS, Strnat MA. Effect of hyperglycemia on peri-ischemic neurotransmitter levels in the rabbit hippocampus. Brain Res 1994; 642:104-10. [PMID: 7913389 DOI: 10.1016/0006-8993(94)90910-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study examined the effect of preexisting hyperglycemia on the extracellular concentrations of glutamate and glycine in the rabbit hippocampus using in vivo microdialysis during brief episodes of transient global ischemia. Hyperglycemia has repeatedly been shown to exacerbate the neurologic injury produced by episodes of global cerebral ischemia. Under hypoxic conditions, glucose may be metabolized to glutamate, a known neurotoxin which has been implicated as a mediator of ischemic neuronal cell death. In this study, microdialysis probes were stereotactically inserted into the dorsal hippocampus of anesthetized rabbits. Animals were randomized to receive an i.v. infusion of either saline or dextrose. Global cerebral ischemia was then produced by the combination of neck tourniquet inflation and the induction of systemic hypotension. Administration of dextrose had no effect on these basal levels of glutamate or glycine. During ischemia, glutamate and glycine concentrations increased several-fold when compared with baseline. However, hippocampal glutamate concentrations were lower in the dextrose-treated groups during the peri-ischemic period (P = 0.02). Glycine concentrations were higher during the reperfusion period in the dextrose-treated animals when compared with saline controls (P = 0.03). The increased concentration of extracellular glycine which was observed in the dextrose-treated animals may contribute to the neurologic injury which occurs during episodes of global ischemia. The results of this study suggest that hyperglycemia does not exert its detrimental effects by increasing the extracellular concentration of glutamate.
Collapse
Affiliation(s)
- K T Choi
- Neuroanesthesia Research, University of California at San Diego, La Jolla 92093-0629
| | | | | | | | | |
Collapse
|