Wang WN, Wang AL, Wang DM, Wang LP, Liu Y, Sun RY. Calcium, phosphorus and adenylate levels and Na(+)-K(+)-ATPase activities of prawn, Macrobrachium nipponense, during the moult cycle.
Comp Biochem Physiol A Mol Integr Physiol 2003;
134:297-305. [PMID:
12547259 DOI:
10.1016/s1095-6433(02)00284-2]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Changes in calcium and phosphorus concentrations, adenylate (AMP, ADP and ATP) levels, and ratios and ATPase activities of Macrobrachium nipponense were investigated during the moult cycle. Ca level in the exoskeleton was lowest in early postmoult (stage A), increasing at stages B and through intermoult (stage C) and peaking in premoult (stage D1 and D2). The P concentrations in the exoskeleton and muscle in late premoult and early postmoult stages were higher than those at other moult stages, and were lowest in the intermoult. Muscle adenylate energy charge (AEC) changed with moult stages, and was in agreement with the change in inorganic P level in the muscle. AEC may be a direct indicator of energy metabolic activity during the moult cycle. ATP/ADP and ATP/AMP ratios in premoult and postmoult stages were higher than that in intermoult stage. Na(+)-K(+)-ATPase activities of gills, muscles and hepatopancreatic of prawns were higher in early postmoult and late premoult animals, whereas they were lower in late postmoult, intermoult and early premoult animals. Gill residual ATPase activity was significantly higher in postmoult animals, while the peak value of hepatopancreatic residual ATPase activity appeared in intermoult stage.
Collapse