Gilles R, Bourdouxhe-Housiaux C, Colson P, Houssier C. Effect of compensatory organic osmolytes on resistance to freeze-drying of L929 cells and of their isolated chromatin.
Comp Biochem Physiol A Mol Integr Physiol 1999;
122:145-55. [PMID:
10216938 DOI:
10.1016/s1095-6433(98)10175-7]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(1) Compensatory organic osmolytes are stabilizers of macromolecular structures. During acclimation to dehydration or high salinity, they accumulate in cells and effectively protect them against disruption that might otherwise result from increased inorganic ion concentrations. (2) Circular and electric dichroism, analysis of the kinetics of digestion by micrococcal nuclease, and UV spectra between 190 and 305 nm were used to investigate the resistance to dehydration upon freezing or freeze-drying that could confer such compounds to chromatin isolated from cultured L929 cells. Some work was also done on intact cells in vivo. (3) Sorbitol, sucrose, and trehalose appear to protect isolated chromatin very effectively; proline is less effective. (4) These compounds also effectively protect chromatin from the disrupting effects of NaCl. (5) Cells loaded and grown with sorbitol, sucrose, or proline can tolerate larger decreases in hydration than control cells. They cannot, however, tolerate complete dehydration.
Collapse