Singh SK, Trivedi M, Chandra M, Sahay AN, Pandey DS. Luminescent Piano-Stool Complexes Incorporating 1-(4-Cyanophenyl)imidazole: Synthesis, Spectral, and Structural Studies.
Inorg Chem 2004;
43:8600-8. [PMID:
15606211 DOI:
10.1021/ic049256m]
[Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three novel luminescent piano-stool arene ruthenium complexes of general formula [(eta(6)-arene)RuCl(2)(CPI)] (eta(6)-arene = benzene, 1, p-cymene, 2, and hexamethylbenzene, 3; CPI=1-(4-cyanophenyl)imidazole were prepared. The molecular structures of 2 and 3 were determined crystallographically. Reaction of 1-3 with EPh(3) (E = P, As, or Sb) and N-N donor bases such as 2,2'-bipyridine and 1,10-phenanthroline afforded cationic mononuclear complexes of general formula [(eta(6)-arene)RuCl(CPI)(EPh(3))](+) (eta(6)-arene = C(6)H(6), E = P (1a), E = As (1b), E = Sb(1c); eta(6)-arene = C(10)H(14), E = P (2a), E = As (2b), E = Sb (2c); eta(6)-arene = C(6)Me(6), E = P (3a), E = As (3b), E = Sb (3c)) and [(eta(6)-arene)Ru(N-N)(CPI)](2+) (eta(6)-arene = C(6)H(6), N-N = bipy (1d), N-N = phen (1e); eta(6)-arene = C(10)H(14), N-N = bipy (2d), N-N = phen (2e); eta(6)-arene = C(6)Me(6), N-N = bipy (3d), N-N = phen (3e)). Molecular structures of 1a and 2a were also confirmed by X-ray crystallography. Structural studies of the complexes 2, 3, 1a, and 2a supported coordination of CPI through the imidazole nitrogen and the presence of a pendant nitrile group. Structural data also revealed stabilization of crystal packing in the complexes 2, 3, and 2a by C-H...X (X = Cl, F) type inter- and intramolecular interactions and in complex 1a by pi-pi stacking. Moreover, neutral homonuclear bimetallic complexes 2f,g were prepared by using complex 2 as a metallo-ligand, where CPI acts as a bridge between two metal centers. Emission spectra of the mononuclear complexes [(eta(6)-arene)RuCl(2)(CPI)] and its derivatives exhibited intense luminescence when excited in the metal to ligand charge-transfer band.
Collapse