1
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
2
|
Sun T, Minhas V, Korolev N, Mirzoev A, Lyubartsev AP, Nordenskiöld L. Bottom-Up Coarse-Grained Modeling of DNA. Front Mol Biosci 2021; 8:645527. [PMID: 33816559 PMCID: PMC8010198 DOI: 10.3389/fmolb.2021.645527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recent advances in methodology enable effective coarse-grained modeling of deoxyribonucleic acid (DNA) based on underlying atomistic force field simulations. The so-called bottom-up coarse-graining practice separates fast and slow dynamic processes in molecular systems by averaging out fast degrees of freedom represented by the underlying fine-grained model. The resulting effective potential of interaction includes the contribution from fast degrees of freedom effectively in the form of potential of mean force. The pair-wise additive potential is usually adopted to construct the coarse-grained Hamiltonian for its efficiency in a computer simulation. In this review, we present a few well-developed bottom-up coarse-graining methods, discussing their application in modeling DNA properties such as DNA flexibility (persistence length), conformation, "melting," and DNA condensation.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander P. Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 2021; 54:e5. [PMID: 33722316 DOI: 10.1017/s0033583521000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.
Collapse
|
4
|
Sun T, Mirzoev A, Minhas V, Korolev N, Lyubartsev AP, Nordenskiöld L. A multiscale analysis of DNA phase separation: from atomistic to mesoscale level. Nucleic Acids Res 2019; 47:5550-5562. [PMID: 31106383 PMCID: PMC6582353 DOI: 10.1093/nar/gkz377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
DNA condensation and phase separation is of utmost importance for DNA packing in vivo with important applications in medicine, biotechnology and polymer physics. The presence of hexagonally ordered DNA is observed in virus capsids, sperm heads and in dinoflagellates. Rigorous modelling of this process in all-atom MD simulations is presently difficult to achieve due to size and time scale limitations. We used a hierarchical approach for systematic multiscale coarse-grained (CG) simulations of DNA phase separation induced by the three-valent cobalt(III)-hexammine (CoHex3+). Solvent-mediated effective potentials for a CG model of DNA were extracted from all-atom MD simulations. Simulations of several hundred 100-bp-long CG DNA oligonucleotides in the presence of explicit CoHex3+ ions demonstrated aggregation to a liquid crystalline hexagonally ordered phase. Following further coarse-graining and extraction of effective potentials, we conducted modelling at mesoscale level. In agreement with electron microscopy observations, simulations of an 10.2-kb-long DNA molecule showed phase separation to either a toroid or a fibre with distinct hexagonal DNA packing. The mechanism of toroid formation is analysed in detail. The approach used here is based only on the underlying all-atom force field and uses no adjustable parameters and may be generalised to modelling chromatin up to chromosome size.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
5
|
Temperature-dependence of the bending elastic constant of DNA and extension of the two-state model. Tests and new insights. Biophys Chem 2019; 251:106146. [DOI: 10.1016/j.bpc.2019.106146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
|
6
|
Lee S, Lee Y, Kim Y, Wang C, Park J, Jung GY, Chen Y, Chang R, Ikeda S, Sugiyama H, Jo K. Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Concentrations. Polymers (Basel) 2018; 11:E15. [PMID: 30959999 PMCID: PMC6401831 DOI: 10.3390/polym11010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Large DNA molecules have been utilized as a model system to investigate polymer physics. However, DNA visualization via intercalating dyes has generated equivocal results due to dye-induced structural deformation, particularly unwanted unwinding of the double helix. Thus, the contour length increases and the persistence length changes so unpredictably that there has been a controversy. In this paper, we used TAMRA-polypyrrole to stain single DNA molecules. Since this staining did not change the contour length of B-form DNA, we utilized TAMRA-polypyrrole stained DNA as a tool to measure the persistence length by changing the ionic strength. Then, we investigated DNA stretching in nanochannels by varying the ionic strength from 0.06 mM to 47 mM to evaluate several polymer physics theories proposed by Odijk, de Gennes and recent papers to deal with these regimes.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yelin Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yongkyun Kim
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Cong Wang
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Gun Young Jung
- School of Material Science and Engineering, GIST, Gwangju 61005, Korea.
| | - Yenglong Chen
- Institute of Physics, Academia Sinica and Department of Chemical Engineering, National Tsing-Hua University and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea.
| | - Shuji Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
7
|
Karau P, Tabard-Cossa V. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores. ACS Sens 2018; 3:1308-1315. [PMID: 29874054 DOI: 10.1021/acssensors.8b00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The challenge when employing solid-state nanopores as single-molecule sensors in a given assay is the specificity of the ionic current signal during the translocation of target molecules. Here we present the capture and translocation characteristics of short structurally defined DNA molecules that could serve as effective surrogate labels in biosensing applications. We produced T-shaped or Y-shaped DNA molecules with a 50 bp double-stranded DNA (dsDNA) backbone and a 25 bp dsDNA branch in the middle, as improved labels over short linear DNA fragments. We show that molecular topologies can be distinguished from linear DNA by analyzing ionic current blockades produced as these DNA labels translocate through nanopores fabricated by controlled breakdown on 10-nm-thick SiN membranes and ranging in diameter from 4 to 10 nm. Event signatures are shown to be a direct result of the structure of the label and lead to an increased signal-to-noise ratio over that of short linear dsDNA, in addition to well resolved dwell times for the pore size in this range. These results show that structurally defined branched DNA molecules can be robustly detected for a broad range of pore size, and thus represent promising candidates as surrogate labels in a variety of nanopore-based molecular or immunoassay schemes.
Collapse
Affiliation(s)
- Philipp Karau
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
8
|
Kinney NA, Sharakhov IV, Onufriev AV. Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement. Epigenetics Chromatin 2018; 11:3. [PMID: 29357905 PMCID: PMC5776839 DOI: 10.1186/s13072-018-0173-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background It is well recognized that the interphase chromatin of higher eukaryotes folds into non-random configurations forming territories within the nucleus. Chromosome territories have biologically significant properties, and understanding how these properties change with time during lifetime of the cell is important. Chromosome–nuclear envelope (Chr–NE) interactions play a role in epigenetic regulation of DNA replication, repair, and transcription. However, their role in maintaining chromosome territories remains unclear. Results We use coarse-grained molecular dynamics simulations to study the effects of Chr–NE interactions on the dynamics of chromosomes within a model of the Drosophila melanogaster regular (non-polytene) interphase nucleus, on timescales comparable to the duration of interphase. The model simulates the dynamics of chromosomes bounded by the NE. Initially, the chromosomes in the model are prearranged in fractal-like configurations with physical parameters such as nucleus size and chromosome persistence length taken directly from experiment. Time evolution of several key observables that characterize the chromosomes is quantified during each simulation: chromosome territories, chromosome entanglement, compactness, and presence of the Rabl (polarized) chromosome arrangement. We find that Chr–NE interactions help maintain chromosome territories by slowing down and limiting, but not eliminating, chromosome entanglement on biologically relevant timescales. At the same time, Chr–NE interactions have little effect on the Rabl chromosome arrangement as well as on how chromosome compactness changes with time. These results are rationalized by simple dimensionality arguments, robust to model details. All results are robust to the simulated activity of topoisomerase, which may be present in the interphase cell nucleus. Conclusions Our study demonstrates that Chr–NE attachments may help maintain chromosome territories, while slowing down and limiting chromosome entanglement on biologically relevant timescales. However, Chr–NE attachments have little effect on chromosome compactness or the Rabl chromosome arrangement. Electronic supplementary material The online version of this article (10.1186/s13072-018-0173-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- Genomics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Genomics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Entomology, Virginia Tech, Blacksburg, VA, 24061, USA. .,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia, 634050.
| | - Alexey V Onufriev
- Genomics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Physics, Virginia Tech, Blacksburg, VA, 24060, USA. .,Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
9
|
Kriegel F, Ermann N, Forbes R, Dulin D, Dekker NH, Lipfert J. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res 2017; 45:5920-5929. [PMID: 28460037 PMCID: PMC5449586 DOI: 10.1093/nar/gkx280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt.
Collapse
Affiliation(s)
- Franziska Kriegel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Niklas Ermann
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Ruaridh Forbes
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
10
|
Yu ZL, Leung KK, Yu HZ, Bizzotto D. A non-linear harmonic analysis of potential induced fluorescence modulation of a DNA self assembled monolayer. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Zoli M. Twist-stretch profiles of DNA chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225101. [PMID: 28394255 DOI: 10.1088/1361-648x/aa6c50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule's free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
12
|
Salari H, Eslami-Mossallam B, Ranjbar HF, Ejtehadi MR. Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy. Phys Rev E 2017; 94:062407. [PMID: 28085439 DOI: 10.1103/physreve.94.062407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 11/07/2022]
Abstract
Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D) confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads to the transient curvature increasing with a half helical turn periodicity along the bent polymer.
Collapse
Affiliation(s)
- H Salari
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - B Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - H F Ranjbar
- Institute of Complex Systems (ICS-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - M R Ejtehadi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran and School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
13
|
Porschke D. Boundary conditions for free A-DNA in solution and the relation of local to global DNA structures at reduced water activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:413-21. [PMID: 26872482 PMCID: PMC4901124 DOI: 10.1007/s00249-015-1110-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022]
Abstract
Because of repeated claims that A-DNA cannot exist without aggregation or condensation, the state of DNA restriction fragments with 84–859 bp has been analyzed in aqueous solutions upon reduction of the water activity. Rotational diffusion times τd measured by electric dichroism at different water activities with a wide variation of viscosities are normalized to values τc at the viscosity of water, which indicate DNA structures at a high sensitivity. For short helices (chain lengths \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\ell} $$\end{document}ℓ ≤ persistence length p), cooperative formation of A-DNA is reflected by the expected reduction of the hydrodynamic length; the transition to the A-form is without aggregation or condensation upon addition of ethanol at monovalent salt ≤1 mM. The aggregation boundary, indicated by a strong increase of τc, is shifted to higher monovalent salt (≥4 mM) when ethanol is replaced by trifluoroethanol. The BA transition is not indicated anymore by a cooperative change of τc for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\ell} $$\end{document}ℓ » p; τc values for these long chains decrease upon reduction of the water activity continuously over the full range, including the BA transition interval. This suggests a non-cooperative BC transition, which induces DNA curvature. The resulting wide distribution of global structures hides changes of local length during the BA transition. Free A-DNA without aggregation/condensation is found at low-salt concentrations where aggregation is inhibited and/or very slow. In an intermediate range of solvent conditions, where the A-form starts to aggregate, a time window remains that can be used for analysis of free A-DNA in a quasi-equilibrium state.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, 37077, Göttingen, Germany.
| |
Collapse
|
14
|
Brunet A, Tardin C, Salomé L, Rousseau P, Destainville N, Manghi M. Dependence of DNA Persistence Length on Ionic Strength of Solutions with Monovalent and Divalent Salts: A Joint Theory–Experiment Study. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00735] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annaël Brunet
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| | - Catherine Tardin
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
| | - Laurence Salomé
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS) 205 route de Narbonne, BP 64182, F-31077 Toulouse, France
- UPS,
IPBS, Université de Toulouse F-31077 Toulouse, France
| | - Philippe Rousseau
- UPS,
Laboratoire de Microbiologie et Génétique Moléculaires
(LMGM), Université de Toulouse, F-31062 Toulouse, France
- CNRS, LMGM, UMR CNRS-UPS 5100, F-31062 Toulouse, France
| | - Nicolas Destainville
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| | - Manoel Manghi
- UPS, Laboratoire
de Physique Théorique (IRSAMC), Université de Toulouse, F-31062 Toulouse, France
- CNRS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France
| |
Collapse
|
15
|
Abstract
Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.
Collapse
Affiliation(s)
- Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Zhivkov AM, Hristov RP. Electric polarizability dispersion of alumina particles with adsorbed carboxymethyl cellulose. RSC Adv 2014. [DOI: 10.1039/c3ra40431e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Tree DR, Muralidhar A, Doyle PS, Dorfman KD. Is DNA a Good Model Polymer? Macromolecules 2013; 46:10.1021/ma401507f. [PMID: 24347685 PMCID: PMC3859536 DOI: 10.1021/ma401507f] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The details surrounding the cross-over from wormlike-specific to universal polymeric behavior has been the subject of debate and confusion even for the simple case of a dilute, unconfined wormlike chain. We have directly computed the polymer size, form factor, free energy and Kirkwood diffusivity for unconfined wormlike chains as a function of molecular weight, focusing on persistence lengths and effective widths that represent single-stranded and double-stranded DNA in a high ionic strength buffer. To do so, we use a chain-growth Monte Carlo algorithm, the Pruned-Enriched Rosenbluth Method (PERM), which allows us to estimate equilibrium and near-equilibrium dynamic properties of wormlike chains over an extremely large range of contour lengths. From our calculations, we find that very large DNA chains (≈ 1,000,000 base pairs depending on the choice of size metric) are required to reach flexible, swollen non-draining coils. Furthermore, our results indicate that the commonly used model polymer λ-DNA (48,500 base pairs) does not exhibit "ideal" scaling, but exists in the middle of the transition to long-chain behavior. We subsequently conclude that typical DNA used in experiments are too short to serve as an accurate model of long-chain, universal polymer behavior.
Collapse
Affiliation(s)
- Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota
| | - Abhiram Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota
| |
Collapse
|
18
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
19
|
Travers AA, Muskhelishvili G, Thompson JMT. DNA information: from digital code to analogue structure. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2960-2986. [PMID: 22615471 DOI: 10.1098/rsta.2011.0231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The digital linear coding carried by the base pairs in the DNA double helix is now known to have an important component that acts by altering, along its length, the natural shape and stiffness of the molecule. In this way, one region of DNA is structurally distinguished from another, constituting an additional form of encoded information manifest in three-dimensional space. These shape and stiffness variations help in guiding and facilitating the DNA during its three-dimensional spatial interactions. Such interactions with itself allow communication between genes and enhanced wrapping and histone-octamer binding within the nucleosome core particle. Meanwhile, interactions with proteins can have a reduced entropic binding penalty owing to advantageous sequence-dependent bending anisotropy. Sequence periodicity within the DNA, giving a corresponding structural periodicity of shape and stiffness, also influences the supercoiling of the molecule, which, in turn, plays an important facilitating role. In effect, the super-helical density acts as an analogue regulatory mode in contrast to the more commonly acknowledged purely digital mode. Many of these ideas are still poorly understood, and represent a fundamental and outstanding biological question. This review gives an overview of very recent developments, and hopefully identifies promising future lines of enquiry.
Collapse
Affiliation(s)
- A A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | |
Collapse
|
20
|
Shao Q, Goyal S, Finzi L, Dunlap D. Physiological levels of salt and polyamines favor writhe and limit twist in DNA. Macromolecules 2012; 45:3188-3196. [PMID: 23526178 DOI: 10.1021/ma300211t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Quantitative analysis of single molecule experiments show that adding either of two natural polyamines, spermine or spermidine, produced more compact plectonemes in DNA in physiological concentrations of monovalent salt. They also promoted plectoneme formation at lower values of torsion in measurements of extension versus twist. Quantifying changes in the plectonemic DNA using some results from simple rod models suggested that exposure to polyamines reduced the radii and increased the densities of plectonemes. Thus, polyamines may limit the twist density by favoring writhe which maintains the B-form. Although polymerases may significantly stretch the double helix, denature DNA, and produce twist instead of writhe, natural polyamines stabilize base-pairing, limit twist to maintain the B-form, and promote supercoiling, which is conducive to replication and transcription and essential for DNA packaging.
Collapse
Affiliation(s)
- Qing Shao
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | | | |
Collapse
|
21
|
Lee OS, Cho VY, Schatz GC. A- to B-Form Transition in DNA Between Gold Surfaces. J Phys Chem B 2012; 116:7000-5. [DOI: 10.1021/jp300877e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- One-Sun Lee
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - Vince Y. Cho
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113,
United States
| |
Collapse
|
22
|
Porschke D. Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:415-24. [PMID: 22361785 DOI: 10.1007/s00249-012-0791-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/31/2011] [Accepted: 01/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetics of cAMP receptor (CAP) binding to promoter DNA has been studied by stopped-flow electric-dichroism at a reduced salt concentration, where the coupling of non-specific and specific binding can be observed directly. Amplitudes, rise and decay times of dichroism transients provide detailed information about the reaction and the structure of intermediates over more than six orders of magnitude on the time scale. CAP binding during the first milliseconds after mixing is indicated by an increase of both rise- and decay-time constants. A particularly large increase of rise times reflects initial formation of non-symmetric complexes by protein binding to non-specific sites at DNA ends. The increase of the hydrodynamic dimensions continues up to ~1 s, before a decrease of time constants reflects transition to compact states with bent DNA up to the time range of ~10(3) s. The slow approach to CAP-induced DNA bending is due to non-specific complexes, which are formed initially and are converted slowly to the specific complex. At the salt concentration of 13.5 mM, conversion to specific complexes with bent DNA is completed after ~40 s at pH 8 compared to >10(3) s at pH 7, resulting from a higher affinity of CAP to non-specific sites at pH 7 than 8 by a factor of ~100. Thus, under the given conditions non-specific sites delay rather than facilitate formation of the specific complex with bent DNA. Experimental data obtained for a non-specific DNA clearly indicate the impact of pseudo-sites. The different electro-optical parameters have been combined in global fits.
Collapse
Affiliation(s)
- Dietmar Porschke
- AG Biomolecular Dynamics, Max Planck Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
23
|
Porschke D. Electric birefringence at small angles from crossed position: enhanced sensitivity and special effects. J Phys Chem B 2011; 115:4177-83. [PMID: 21417471 DOI: 10.1021/jp111240n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measurements of electric birefringence with increased sensitivity are possible using lasers with high intensity and stability, provided that perturbations resulting from stray light and strain in cell windows can be reduced. A new type of cell window is designed for minimal strain and is used in a standard birefringence setup with optimized components. The new instrument is characterized by a stray-light constant of 2 × 10(-7) and a negligible residual birefringence. Thus, measurements can be extended to small angles from the crossed position providing birefringence signals of high amplitudes at favorable signal-to-noise ratios. Special effects at small angles from the crossed position like a divergent increase of relative amplitudes to extreme values, a nonlinear response, a new type of electro-optical anomaly, and a simple bypass around this anomaly are observed and shown to be consistent with the theory. The technique proves to be particularly useful for measurements at physiological salt concentrations, where signals for most systems are too small under conventional conditions.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für Biophysikalische Chemie, AG Biomolecular Dynamics, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
24
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
25
|
Porschke D. Allosteric control of promoter DNA bending by cyclic AMP receptor and cyclic AMP. Biochemistry 2010; 49:5553-9. [PMID: 20545361 DOI: 10.1021/bi100542f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the cyclic AMP receptor-promoter complex in solution was studied in the range of 0.2-50 microM cAMP by measurements of the electric birefringence at 0.1 M salt using a lac promoter DNA with 121 bp and with the CAP binding site at its center. An excess of protein required for complete conversion of the promoter DNA into the specific complex seems to be partly due to nonspecific binding. The specific complex is associated with a decay time constant of 1.36 micros at 3 degrees C, a positive birefringence, and a permanent dipole moment demonstrated by pulse reversal. These attributes were observed at cAMP concentrations between 3 and 50 muM and are characteristic of the specific complex. Model calculations demonstrate that the DNA bending angle under these conditions is 92 degrees . The observed positive birefringence does not result from the combination of the calculated quasi-permanent dipole and the orientation of the helix axes alone but is due to coupling of translational and rotational diffusion. When the cAMP concentration is decreased below 3 microM, the positive birefringence turns to a negative one with a transition center at 1.5 microM. The transition is too narrow for a model with induction of the specific cyclic AMP receptor-promoter complex after binding of a single cAMP to the cyclic AMP receptor dimer but is consistent with induction of this complex after binding of two cAMP molecules. The cyclic AMP receptor-promoter complex is driven into its specific bent form in vitro in the range of cAMP concentrations corresponding to that required for gene regulation in vivo.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| |
Collapse
|
26
|
Travers A, Hiriart E, Churcher M, Caserta M, Di Mauro E. The DNA sequence-dependence of nucleosome positioning in vivo and in vitro. J Biomol Struct Dyn 2010; 27:713-24. [PMID: 20232928 PMCID: PMC2864905 DOI: 10.1080/073911010010524942] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The contribution of histone-DNA interactions to nucleosome positioning in vivo is currently a matter of debate. We argue here that certain nucleosome positions, often in promoter regions, in yeast may be, at least in part, specified by the DNA sequence. In contrast other positions may be poorly specified. Positioning thus has both statistical and DNA-determined components. We further argue that the relative affinity of the octamer for different DNA sequences can vary and therefore the interaction of histones with the DNA is a 'tunable' property.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | |
Collapse
|
27
|
Kaiser W, Rant U. Conformations of End-Tethered DNA Molecules on Gold Surfaces: Influences of Applied Electric Potential, Electrolyte Screening, and Temperature. J Am Chem Soc 2010; 132:7935-45. [DOI: 10.1021/ja908727d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wolfgang Kaiser
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, 85748 Garching, Germany
| | - Ulrich Rant
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, 85748 Garching, Germany
| |
Collapse
|
28
|
Vetcher AA, McEwen AE, Abujarour R, Hanke A, Levene SD. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys Chem 2010; 148:104-11. [PMID: 20346570 PMCID: PMC2867096 DOI: 10.1016/j.bpc.2010.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/15/2022]
Abstract
Agarose-gel electrophoresis has been used for more than thirty years to characterize the linking-number (Lk) distribution of closed-circular DNA molecules. Although the physical basis of this technique remains poorly understood, the gel-electrophoretic behavior of covalently closed DNAs has been used to determine the local unwinding of DNA by proteins and small-molecule ligands, characterize supercoiling-dependent conformational transitions in duplex DNA, and to measure helical-repeat changes due to shifts in temperature and ionic strength. Those results have been analyzed by assuming that the absolute mobility of a particular topoisomer is mainly a function of the integral number of superhelical turns, and thus a slowly varying function of plasmid molecular weight. In examining the mobilities of Lk topoisomers for a series of plasmids that differ incrementally in size over more than one helical turn, we found that the size-dependent agarose-gel mobility of individual topoisomers with identical values of Lk (but different values of the excess linking number, DeltaLk) vary dramatically over a duplex turn. Our results suggest that a simple semi-empirical relationship holds between the electrophoretic mobility of linking-number topoisomers and their average writhe in solution.
Collapse
Affiliation(s)
- Alexandre A. Vetcher
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Abbye E. McEwen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Ramzey Abujarour
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Andreas Hanke
- Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 USA
| | - Stephen D. Levene
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
- Department of Physics, University of Texas at Dallas, Richardson, TX 75083 USA
| |
Collapse
|
29
|
Moukhtar J, Faivre-Moskalenko C, Milani P, Audit B, Vaillant C, Fontaine E, Mongelard F, Lavorel G, St-Jean P, Bouvet P, Argoul F, Arneodo A. Effect of Genomic Long-Range Correlations on DNA Persistence Length: From Theory to Single Molecule Experiments. J Phys Chem B 2010; 114:5125-43. [DOI: 10.1021/jp911031y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Moukhtar
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Cendrine Faivre-Moskalenko
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Pascale Milani
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Cedric Vaillant
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Emeline Fontaine
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Fabien Mongelard
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Guillaume Lavorel
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Philippe St-Jean
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Philippe Bouvet
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France, Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France, and Laboratoire Joliot-Curie and Laboratoire de Biologie Moléculaire de la Cellule, CNRS/Ecole Normale Supérieure de Lyon, 46 allée d’Italie, F-69007 Lyon, France
| |
Collapse
|
30
|
Antosiewicz JM, Porschke D. Effects of Hydrodynamic Coupling on Electro-Optical Transients. J Phys Chem B 2009; 113:13988-92. [DOI: 10.1021/jp9050403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan M. Antosiewicz
- Department of Biophysics, University of Warsaw, 02-089
Warsaw, Poland, Max Planck Institut für biophysikalische Chemie,
37077 Göttingen, Germany, Tel. −551-2011438; Fax −551-2011168;
| | - Dietmar Porschke
- Department of Biophysics, University of Warsaw, 02-089
Warsaw, Poland, Max Planck Institut für biophysikalische Chemie,
37077 Göttingen, Germany, Tel. −551-2011438; Fax −551-2011168;
| |
Collapse
|
31
|
Masubuchi Y, Furuichi K, Horio K, Uneyama T, Watanabe H, Ianniruberto G, Greco F, Marrucci G. Primitive chain network simulations for entangled DNA solutions. J Chem Phys 2009; 131:114906. [DOI: 10.1063/1.3225994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Brinkers S, Dietrich HRC, de Groote FH, Young IT, Rieger B. The persistence length of double stranded DNA determined using dark field tethered particle motion. J Chem Phys 2009; 130:215105. [PMID: 19508104 DOI: 10.1063/1.3142699] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The wormlike chain model describes the micromechanics of semiflexible polymers by introducing the persistence length. We propose a method of measuring the persistence length of DNA in a controllable near-native environment. Using a dark field microscope, the projected positions of a gold nanoparticle undergoing constrained Brownian motion are captured. The nanoparticle is tethered to a substrate using a single double stranded DNA (dsDNA) molecule and immersed in buffer. No force is exerted on the DNA. We carried out Monte Carlo simulations of the experiment, which give insight into the micromechanics of the DNA and can be used to interpret the motion of the nanoparticle. Our simulations and experiments demonstrate that, unlike other similar experiments, the use of nanometer instead of micrometer sized particles causes particle-substrate and particle-DNA interactions to be of negligible effect on the position distribution of the particle. We also show that the persistence length of the tethering DNA can be estimated with a statistical error of 2 nm, by comparing the statistics of the projected position distribution of the nanoparticle to the Monte Carlo simulations. The persistence lengths of 45 single molecules of four different lengths of dsDNA were measured under the same environmental conditions at high salt concentration. The persistence lengths we found had a mean value of 35 nm (standard error of 2.8 nm), which compares well to previously found values using similar salt concentrations. Our method can be used to directly study the effect of the environmental conditions (e.g., buffer and temperature) on the persistence length.
Collapse
Affiliation(s)
- Sanneke Brinkers
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Mielke SP, Benham CJ, Grønbech-Jensen N. Persistence lengths of DNA obtained from Brownian dynamics simulations. J Phys Chem A 2009; 113:4213-6. [PMID: 19371114 DOI: 10.1021/jp8107599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The persistence length of DNA has been studied for decades; however, experimentally obtained values of this quantity have not been entirely consistent. We report results from Brownian dynamics simulations that address this issue, validating and demonstrating the utility of an explicitly double-stranded model for mesoscale DNA dynamics. We find that persistence lengths calculated from rotational relaxation increase with decreasing ionic strength, corroborating experimental evidence, but contradicting results obtained from wormlike coil assumptions. Further, we find that natural curvature does not significantly affect the persistence length, corroborating cyclization efficiency measurements, but contradicting results from cryo-EM.
Collapse
Affiliation(s)
- Steven P Mielke
- NASA Goddard Institute for Space Studies, New York, New York 10025, USA
| | | | | |
Collapse
|
34
|
Maruyama T, Takata T, Ichinose H, Kamiya N, Kuma H, Hamasaki N, Morita H, Goto M. Detection of Point Mutations in the HBV Polymerase Gene Using a Fluorescence Intercalator in Reverse Micelles. Biotechnol Prog 2008; 21:575-9. [PMID: 15801801 DOI: 10.1021/bp0496474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a novel and simple method for mutation detection in DNA oligonucleotides using a double-stranded DNA specific dye (SYBR Green I) in nanostructured molecular assemblies, called reverse micelles. The intercalation of SYBR Green I into the duplex DNA exhibits fluorescent emission in a CTAB/isooctane reverse micellar system as well as in an aqueous solution. We found marked differences in the fluorescence intensity between perfectly matched and mismatched 52-mer synthetic oligonucleotides, which were designed to contain the YMDD motif of the hepatitis B virus (HBV) polymerase gene, in a reverse micellar solution. Using this method, we successfully detected a mutation in PCR-amplified oligonucleotides of the HBV polymerase gene in sera of four patients with chronic hepatitis B. This detection method does not require DNA immobilization, chemical modification of DNA, or any special apparatus; it only needs a normal fluorescence spectrophotometer, an inexpensive dye, and just 10 pmol of sample DNA.
Collapse
Affiliation(s)
- Tatsuo Maruyama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mansfield ML, Douglas JF. Transport Properties of Wormlike Chains with Applications to Double Helical DNA and Carbon Nanotubes. Macromolecules 2008. [DOI: 10.1021/ma702837v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc L. Mansfield
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, and Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Jack F. Douglas
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, and Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
36
|
Hsieh CC, Balducci A, Doyle PS. Ionic effects on the equilibrium dynamics of DNA confined in nanoslits. NANO LETTERS 2008; 8:1683-8. [PMID: 18459741 DOI: 10.1021/nl080605+] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ionic effects on the dynamics and conformation of DNA in silt-like confinement are investigated. Confined lambda-DNA is considered as a model polyelectrolyte, and its longest relaxation time, diffusivity, and size are measured at a physiological ionic strength between 1.7-170 mM. DNA properties change drastically in response to the varying ionic environment, and these changes can be explained by blob theory with an electrostatically mediated effective diameter and persistence length. In the ionic range we investigate, the effective diameter of DNA that represents the electrostatic repulsion between remote segments is found to be the main driving force for the observed change in DNA properties. Our results are useful for understanding the manipulation of biomolecules in nanofluidic devices.
Collapse
Affiliation(s)
- Chih-Chen Hsieh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
37
|
Abstract
Nucleic acids are highly charged polyanionic molecules; thus, the ionic conditions are crucial for nucleic acid structural changes such as bending. We use the tightly bound ion theory, which explicitly accounts for the correlation and ensemble effects for counterions, to calculate the electrostatic free energy landscapes for DNA helix bending. The electrostatic free energy landscapes show that DNA bending energy is strongly dependent on ion concentration, valency, and size. In a Na(+) solution, DNA bending is electrostatically unfavorable because of the strong charge repulsion on backbone. With the increase of the Na(+) concentration, the electrostatic bending repulsion is reduced and thus the bending becomes less unfavorable. In contrast, in an Mg(2+) solution, ion correlation induces a possible attractive force between the different parts of the helical strands, resulting in bending. The electrostatically most favorable and unfavorable bending directions are toward the major and minor grooves, respectively. Decreasing the size of the divalent ions enhances the electrostatic bending attraction, causing an increased bending angle, and shifts the most favorable bending to the direction toward the minor groove. The microscopic analysis on ion-binding distribution reveals that the divalent ion-induced helix bending attraction may come from the correlated distribution of the ions across the grooves in the bending direction.
Collapse
|
38
|
Porschke D. Unique Physical Signature of DNA Curvature and Its Implications for Structure and Dynamics. J Phys Chem B 2007; 111:12004-11. [PMID: 17887666 DOI: 10.1021/jp073965e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A particularly sensitive birefringence technique is used to analyze a curved DNA fragment with 118 bp and a standard DNA with 119 bp. At salt concentrations from 0.5 to 10 mM, both fragments show the usual negative stationary birefringence and monotonic transients - differences are relatively small. At 100 mM salt the curved DNA shows a positive stationary birefringence and non-monotonic transients with processes having amplitudes of opposite sign, whereas signals of the standard DNA remain as usual. Transients induced by reversal of the field vector indicate the existence of a permanent dipole for the curved DNA. 2-MHz-ac pulses induce a negative stationary birefringence in both DNAs. These results are consistent with calculations on models for curved DNA predicting a quasi-permanent dipole and a positive dichroism/birefringence. The quasi-permanent dipole results from the loss of symmetry in the charge distribution of the curved polyelectrolyte. The appearance of the unique signature of curvature at high salt is mainly due to a strong decrease of the polarizability by about 2 orders of magnitude. The special mode of orientation resulting from the quasi-permanent dipole is expected to contribute to the gel migration anomaly. The time constants of birefringence decay for the curved fragment are shorter than those of the 119 bp fragment by a factor of approximately 1.10 at 0.6 mM salt, whereas this factor is approximately 1.20 at 100 mM Na+. If both fragments were normal DNA with 3.4 A rise per base pair, the factor would be approximately 1.02. At high salt and high electric field strengths the factor increases up to 1.37. The implications for the bending dynamics and the potential to distinguish static from dynamic persistence by field reversal experiments are discussed. The dependence of the curvature on the salt concentration indicated by the time constants is consistent with a clear decrease of the electrophoretic anomaly at decreasing salt concentration.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, AG Biomolecular Dynamics, 37077, Göttingen, Germany
| |
Collapse
|
39
|
Porschke D. The nature of "unusual" electro-optical transients observed for DNA. Colloids Surf B Biointerfaces 2007; 56:44-9. [PMID: 17188466 DOI: 10.1016/j.colsurfb.2006.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022]
Abstract
Unusual electro-optical transients have been observed for many different polymers and colloidal systems. These effects provoked serious confusion, because a simple-minded interpretation can be completely misleading. The case of double helical DNA is of particular interest, because DNA has been studied in more detail than other systems and because of its biological function. DNA is subject to bending, which implies a loss of symmetry. Due to its high charge density, non-symmetric conformations must have a non-symmetric distribution of charges leading to a torque of considerable magnitude in the presence of external electric fields. The dipole moment describing this torque must be calculated in a coordinate system with its origin at the center of diffusion. The resulting dipole values are in the range of thousands of Debye units. Because the new dipole type is analogous to but not identical with permanent dipoles, the notation "quasi-permanent" dipole is suggested. Application of this concept, using commonly accepted parameters for DNA and established procedures for calculation of electro-optical transients, leads to "unusual" transients. Thus, these transients must be expected from well-known parameters of DNA double helices. The influence of the quasi-permanent dipole moment may be amplified considerably by hydrodynamic coupling. This effect has been demonstrated for the case of smoothly bent rods. Both model calculations and experiments illustrate the danger of getting data that may be completely misleading. For example, depending on pulse amplitudes and/or pulse lengths, electro-optical decays may be accelerated artificially due to superposition of decay components with opposite amplitudes. Experiments show that unusual transients and apparent acceleration effects disappear, when high frequency sine pulses are used for the electro-optical analysis of DNA. Electro-optical effects depend upon the internal dynamics of the object under investigation. In general, the dynamics of DNA bending was assumed to be fast compared to rotational diffusion. Because stacking rearrangements in single stranded nucleic acids are relatively slow and recently the dynamics of the B-A transition was observed in the time range >1 micros, it is likely that there are also relatively slow rearrangements between bending conformers. Bending transitions are expected to be relatively fast, when there are no activation barriers in the bending pathway, and may be slow, when activation barriers must be passed between bending conformers.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, AG Biomolecular Dynamics, Am Fassberg, 37077 Göttingen, Germany.
| |
Collapse
|
40
|
|
41
|
|
42
|
Zhang Y, McEwen AE, Crothers DM, Levene SD. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping. PLoS One 2006; 1:e136. [PMID: 17205140 PMCID: PMC1762422 DOI: 10.1371/journal.pone.0000136] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
Abstract
Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58-156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes.
Collapse
Affiliation(s)
- Yongli Zhang
- Departments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Abbye E. McEwen
- Institute of Biomedical Sciences and Technology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Donald M. Crothers
- Departments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Stephen D. Levene
- Institute of Biomedical Sciences and Technology, University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Dobrynin AV. Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes. Macromolecules 2006. [DOI: 10.1021/ma061030a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrey V. Dobrynin
- Polymer Program, Institute of Materials Science and Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3136
| |
Collapse
|
44
|
Makita N, Ullner M, Yoshikawa K. Conformational Change of Giant DNA with Added Salt As Revealed by Single Molecular Observation. Macromolecules 2006. [DOI: 10.1021/ma060669b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoko Makita
- Faculty of Environmental and Information Sciences, Yokkaichi University, Yokkaichi 512-8512, Japan; Theoretical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; and Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Magnus Ullner
- Faculty of Environmental and Information Sciences, Yokkaichi University, Yokkaichi 512-8512, Japan; Theoretical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; and Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kenichi Yoshikawa
- Faculty of Environmental and Information Sciences, Yokkaichi University, Yokkaichi 512-8512, Japan; Theoretical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; and Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Pastré D, Piétrement O, Landousy F, Hamon L, Sorel I, David MO, Delain E, Zozime A, Le Cam E. A new approach to DNA bending by polyamines and its implication in DNA condensation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:214-23. [PMID: 16247626 DOI: 10.1007/s00249-005-0025-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/28/2005] [Accepted: 08/02/2005] [Indexed: 11/30/2022]
Abstract
Polyamines are known to induce dynamical bending of DNA molecules. This mechanism is very important since many DNA binding proteins (DNAse, transcription factor, etc.) exert their action by their ability to bend DNA. We propose an analytical model which describes the dynamical bending of DNA by polyamine ions in highly diluted DNA solutions. The bending probability depends on the entropy loss of polyamines due to their localization. This localization is facilitated by the electrostatic repulsion between multivalent counterions condensed on DNA, which reduces the entropy loss in counterion localization. Therefore DNA bending by polyamines depends on the competition between monovalent counterions and polyamines. We find that the bending probability is weak for a low binding ratio of polyamines (i.e. number of bound polyamines per base pair), whereas a high bending probability can be reached at large polyamine binding ratio. In addition, we describe a new mechanism of DNA bending. It occurs with the help of thermal agitation, which initiates the bending and favours the polyamine localization. This model provides further insights into DNA bending by polyamines and its implication in DNA condensation. A qualitative estimation of the DNA bending probability is obtained by measuring the cleavage efficiency of DNA by bleomycin versus spermidine concentration. Indeed, a local helix distortion by polyamines results in an amplification of the double-strand cleavage by bleomycin. The measurement of the bleomycin amplification is performed by analysing images of DNA molecules with atomic force microscope. Some features of the dynamical bending indicate that condensation and bending are interrelated.
Collapse
Affiliation(s)
- David Pastré
- Laboratoire d'Etude des Milieux Nanométriques, Université d'Evry, Rue du Père Jarlan, 91025 Evry Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Anselmi C, DeSantis P, Scipioni A. Nanoscale mechanical and dynamical properties of DNA single molecules. Biophys Chem 2005; 113:209-21. [PMID: 15620506 DOI: 10.1016/j.bpc.2004.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/30/2022]
Abstract
Experimental evidence suggests DNA mechanical properties, in particular intrinsic curvature and flexibility, have a role in many relevant biological processes. Systematic investigations about the origin of DNA curvature and flexibility have been carried out; however, most of the applied experimental techniques need simplifying models to interpret the data, which can affect the results. Progress in the direct visualization of macromolecules allows the analysis of morphological properties and structural changes of DNAs directly from the digitised micrographs of single molecules. In addition, the statistical analysis of a large number of molecules gives information both on the local intrinsic curvature and the flexibility of DNA tracts at nanometric scale in relatively long sequences. However, it is necessary to extend the classical worm-like chain model (WLC) for describing conformations of intrinsically straight homogeneous polymers to DNA. This review describes the various methodologies proposed by different authors.
Collapse
Affiliation(s)
- Claudio Anselmi
- Dipartimento di Chimica, Università di Roma "La Sapienza", I-00185 Rome, Italy
| | | | | |
Collapse
|
47
|
Virstedt J, Berge T, Henderson RM, Waring MJ, Travers AA. The influence of DNA stiffness upon nucleosome formation. J Struct Biol 2005; 148:66-85. [PMID: 15363788 DOI: 10.1016/j.jsb.2004.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/17/2004] [Indexed: 11/16/2022]
Abstract
The rotational and translational positioning of nucleosomes on DNA is dependent to a significant extent on the physicochemical properties of the double helix. We have investigated the influence of the axial flexibility of the molecule on the affinity for the histone octamer by substituting selected DNA sequences with either inosine for guanosine or diaminopurine for adenine. These substitutions, respectively, remove or add a purine 2-amino group exposed in the minor groove and, respectively, decrease and increase the apparent persistence length. We observe that for all sequences tested inosine substitution, with one exception, increases the affinity for histone binding. Conversely diaminopurine substitution decreases the affinity. In the sole example where replacement of guanosine with inosine decreases the persistence length as well as the affinity for histones, the substitution concomitantly removes an intrinsic curvature of the DNA molecule. We show that, to a first approximation, the binding energy of DNA to histones at 1M NaCl is directly proportional to the persistence length. The data also indicate that a high local flexibility of DNA can favour strong rotational positioning.
Collapse
Affiliation(s)
- Johanna Virstedt
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, England, UK
| | | | | | | | | |
Collapse
|
48
|
Porschke D, Antosiewicz JM. Strong Effect of Hydrodynamic Coupling on the Electric Dichroism of Bent Rods. J Phys Chem B 2004; 109:1034-8. [PMID: 16866476 DOI: 10.1021/jp046009v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of hydrodynamic coupling on the spatial orientation of rigid bent rods in electric fields has been analyzed by Brownian dynamics simulations. Bead models for smoothly bent rods were constructed with dimensions of DNA double helices, and established simulation procedures were used to calculate their diffusion tensor, including the translational-rotational coupling tensor. The electric and optical parameters were assigned on the basis of known properties of double helices. Brownian dynamics simulations of the orientation of these models in electric fields showed that both transients and amplitudes of the calculated dichroism are very strongly dependent on translational-rotational coupling over a wide range of electric field strengths. For example, the stationary dichroism of a smoothly bent 179 bp DNA fragment calculated at low field strengths is positive in the presence and negative in the absence of hydrodynamic coupling. The transients are converted from a biphasic to a monophasic shape, when hydrodynamic coupling is turned off. The large changes resulting from hydrodynamic coupling were controlled by calculations based on analytical expressions derived for electrooptical response curves in the limit of low electric field strengths; the results obtained by this independent approach are in very satisfactory agreement with our Brownian dynamics simulations. The effect is strongly dependent on the electric dipole and on its direction. In the absence of any dipole the coupling effect was not observed. The coupling effect increases with the size of the bent rods. Because most macromolecular structures are known to have induced and/or permanent dipole moments, large effects of hydrodynamic coupling on both the amplitudes and the transients of the electric dichroism/birefringence must be expected in general for structures with nonsymmetric shape.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für Biophysikalische Chemie, 37077 Göttingen, Germany
| | | |
Collapse
|
49
|
Lu Y, Weers BD, Stellwagen NC. Intrinsic curvature in the VP1 gene of SV40: comparison of solution and gel results. Biophys J 2004; 88:1191-206. [PMID: 15556988 PMCID: PMC1305122 DOI: 10.1529/biophysj.104.039834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA restriction fragments that are stably curved are usually identified by polyacrylamide gel electrophoresis because curved fragments migrate more slowly than normal fragments containing the same number of basepairs. In free solution, curved DNA molecules can be identified by transient electric birefringence (TEB) because they exhibit rotational relaxation times that are faster than those of normal fragments of the same size. In this article, the results observed in free solution and in polyacrylamide gels are compared for a highly curved 199-basepair (bp) restriction fragment taken from the VP1 gene in Simian Virus 40 (SV40) and various sequence mutants and insertion derivatives. The TEB method of overlapping fragments was used to show that the 199-bp fragment has an apparent bend angle of 46 +/- 2 degrees centered at sequence position 1922 +/- 2 bp. Four unphased A- and T-tracts and a mixed A3T4-tract occur within a span of approximately 60 bp surrounding the apparent bend center; for brevity, this 60-bp sequence element is called a curvature module. Modifying any of the A- or T-tracts in the curvature module by site-directed mutagenesis decreases the curvature of the fragment; replacing all five A- and T-tracts by random-sequence DNA causes the 199-bp mutant to adopt a normal conformation, with normal electrophoretic mobilities and birefringence relaxation times. Hence, stable curvature in this region of the VP1 gene is due to the five unphased A- and T- tracts surrounding the apparent bend center. Discordant solution and gel results are observed when long inverted repeats are inserted within the curvature module. These insertion derivatives migrate anomalously slowly in polyacrylamide gels but have normal, highly flexible conformations in free solution. Discordant solution and gel results are not observed if the insert does not contain a long inverted repeat or if the long inverted repeat is added to the 199-bp fragment outside the curvature module. The results suggest that long inverted repeats can form hairpins or cruciforms when they are located within a region of the helix backbone that is intrinsically curved, leading to large mobility anomalies in polyacrylamide gels. Hairpin/cruciform formation is not observed in free solution, presumably because of rapid conformational exchange. Hence, DNA restriction fragments that migrate anomalously slowly in polyacrylamide gels are not necessarily stably curved in free solution.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
50
|
Zaharoff DA, Yuan F. Effects of pulse strength and pulse duration on in vitro DNA electromobility. Bioelectrochemistry 2004; 62:37-45. [PMID: 14990324 DOI: 10.1016/j.bioelechem.2003.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/25/2003] [Accepted: 10/02/2003] [Indexed: 11/17/2022]
Abstract
Interstitial transport of DNA is a rate-limiting step in electric field-mediated gene delivery in vivo. Interstitial transport of macromolecules, such as plasmid DNA, over a distance of several cell layers, is inefficient due to small diffusion coefficient and inadequate convection. Therefore, we explored electric field as a novel driving force for interstitial transport of plasmid DNA. In this study, agarose gels were used to mimic the interstitium in tissues as they had been well characterized and could be prepared reproducibly. We measured the electrophoretic movements of fluorescently labeled plasmid DNA in agarose gels with three different concentrations (1.0%, 2.0% and 3.0%) subjected to electric pulses at three different field strengths (100, 200 and 400 V/cm) and four different pulse durations (10, 50, 75, 99 ms). We observed that: (1) shorter pulses (10 ms) were not as efficient as longer pulses in facilitating plasmid transport through agarose gels; (2) plasmid electromobility reached a plateau at longer pulse durations; and (3) plasmid electromobility increased with applied electric energy, up to a threshold, in all three gels. These data suggested that both pulse strength and duration needed to be adequately high for efficient plasmid transport through extracellular matrix. We also found that electric field was better than concentration gradient of DNA as a driving force for interstitial transport of plasmid DNA.
Collapse
Affiliation(s)
- David A Zaharoff
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708, USA
| | | |
Collapse
|