1
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
2
|
Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, Aghi K, Gaub BM, Sivyer B, Flannery JG, Isacoff EY. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun 2019; 10:1221. [PMID: 30874546 PMCID: PMC6420663 DOI: 10.1038/s41467-019-09124-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light. MW-opsin enables an otherwise blind retinitis pigmenotosa mouse to discriminate temporal and spatial light patterns displayed on a standard LCD computer tablet, displays adaption to changes in ambient light, and restores open-field novel object exploration under incidental room light. By contrast, rhodopsin, which is similar in sensitivity but slower in light response and has greater rundown, fails these tests. Thus, MW-opsin provides the speed, sensitivity and adaptation needed to restore patterned vision.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Amy Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Autoosa Salari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10024, USA
| | - Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Benjamin M Gaub
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Biosystems Science Engineering, ETH Zürich, Mattenstrasse 26, Basel, 8092, Switzerland
| | - Benjamin Sivyer
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, OR, 97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- School of Optometry, University of California, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Teussink MM, Cense B, van Grinsven MJ, Klevering BJ, Hoyng CB, Theelen T. Impact of motion-associated noise on intrinsic optical signal imaging in humans with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1632-47. [PMID: 26137369 PMCID: PMC4467722 DOI: 10.1364/boe.6.001632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
A growing body of evidence suggests that phototransduction can be studied in the human eye in vivo by imaging of fast intrinsic optical signals (IOS). There is consensus concerning the limiting influence of motion-associated imaging noise on the reproducibility of IOS-measurements, especially in those employing spectral-domain optical coherence tomography (SD-OCT). However, no study to date has conducted a comprehensive analysis of this noise in the context of IOS-imaging. In this study, we discuss biophysical correlates of IOS, and we address motion-associated imaging noise by providing correctional post-processing methods. In order to avoid cross-talk of adjacent IOS of opposite signal polarity, cellular resolution and stability of imaging to the level of individual cones is likely needed. The optical Stiles-Crawford effect can be a source of significant IOS-imaging noise if alignment with the peak of the Stiles-Crawford function cannot be maintained. Therefore, complete head stabilization by implementation of a bite-bar may be critical to maintain a constant pupil entry position of the OCT beam. Due to depth-dependent sensitivity fall-off, heartbeat and breathing associated axial movements can cause tissue reflectivity to vary by 29% over time, although known methods can be implemented to null these effects. Substantial variations in reflectivity can be caused by variable illumination due to changes in the beam pupil entry position and angle, which can be reduced by an adaptive algorithm based on slope-fitting of optical attenuation in the choriocapillary lamina.
Collapse
Affiliation(s)
- Michel M. Teussink
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, P.O. Box 6500 HB,
The Netherlands
| | - Barry Cense
- Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8585,
Japan
| | - Mark J.J.P. van Grinsven
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, P.O. Box 6500 HB,
The Netherlands
| | - B. Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, P.O. Box 6500 HB,
The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, P.O. Box 6500 HB,
The Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, P.O. Box 6500 HB,
The Netherlands
| |
Collapse
|
5
|
Chiou TH, Place AR, Caldwell RL, Marshall NJ, Cronin TW. A novel function for a carotenoid: astaxanthin used as a polarizer for visual signalling in a mantis shrimp. ACTA ACUST UNITED AC 2012; 215:584-9. [PMID: 22279065 DOI: 10.1242/jeb.066019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological signals based on color patterns are well known, but some animals communicate by producing patterns of polarized light. Known biological polarizers are all based on physical interactions with light such as birefringence, differential reflection or scattering. We describe a novel biological polarizer in a marine crustacean based on linear dichroism of a carotenoid molecule. The red-colored, dichroic ketocarotenoid pigment astaxanthin is deposited in the antennal scale of a stomatopod crustacean, Odontodactylus scyllarus. Positive correlation between partial polarization and the presence of astaxanthin indicates that the antennal scale polarizes light with astaxanthin. Both the optical properties and the fine structure of the polarizationally active cuticle suggest that the dipole axes of the astaxanthin molecules are oriented nearly normal to the surface of the antennal scale. While dichroic retinoids are used as visual pigment chromophores to absorb and detect polarized light, this is the first demonstration of the use of a carotenoid to produce a polarizing signal. By using the intrinsic dichroism of the carotenoid molecule and orienting the molecule in tissue, nature has engineered a previously undescribed form of biological polarizer.
Collapse
Affiliation(s)
- Tsyr-Huei Chiou
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | |
Collapse
|
6
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
7
|
Sato K, Yamashita T, Imamoto Y, Shichida Y. Comparative Studies on the Late Bleaching Processes of Four Kinds of Cone Visual Pigments and Rod Visual Pigment. Biochemistry 2012; 51:4300-8. [DOI: 10.1021/bi3000885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Sato
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Temple S, Hart NS, Marshall NJ, Collin SP. A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proc Biol Sci 2010; 277:2607-15. [PMID: 20392734 DOI: 10.1098/rspb.2010.0345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archerfish are famous for spitting jets of water to capture terrestrial insects, a task that not only requires oral dexterity, but also the ability to detect small camouflaged prey against a visually complex background of overhanging foliage. Because detection of olfactory, auditory and tactile cues is diminished at air-water interfaces, archerfish must depend almost entirely on visual cues to mediate their sensory interactions with the aerial world. During spitting, their eyes remain below the water's surface and must adapt to the optical demands of both aquatic and aerial fields of view. These challenges suggest that archerfish eyes may be specially adapted to life at the interface between air and water. Using microspectrophotometry to characterize the spectral absorbance of photoreceptors, we find that archerfish have differentially tuned their rods and cones across their retina, correlated with spectral differences in aquatic and aerial fields of view. Spatial resolving power also differs for aquatic and aerial fields of view with maximum visual resolution (6.9 cycles per degree) aligned with their preferred spitting angle. These measurements provide insight into the functional significance of intraretinal variability in archerfish and infer intraretinal variability may be expected among surface fishes or vertebrates where different fields of view vary markedly.
Collapse
Affiliation(s)
- Shelby Temple
- Sensory Neurobiology Group, School of Biomedical Sciences, The University of Queensland, , St Lucia, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
9
|
Matsumoto H, Yoshizawa T. Rhodopsin Regeneration is AcceleratedviaNoncovalent 11-cisRetinalOpsin ComplexA Role of Retinal Binding Pocket of Opsin. Photochem Photobiol 2008; 84:985-9. [DOI: 10.1111/j.1751-1097.2008.00338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kusnetzow A, Dukkipati A, Babu KR, Singh D, Vought BW, Knox BE, Birge RR. The photobleaching sequence of a short-wavelength visual pigment. Biochemistry 2001; 40:7832-44. [PMID: 11425310 DOI: 10.1021/bi010387y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum.
Collapse
Affiliation(s)
- A Kusnetzow
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-3060, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Degrip W, Rothschild K. Chapter 1 Structure and mechanism of vertebrate visual pigments. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Vought BW, Dukkipatti A, Max M, Knox BE, Birge RR. Photochemistry of the primary event in short-wavelength visual opsins at low temperature. Biochemistry 1999; 38:11287-97. [PMID: 10471278 DOI: 10.1021/bi990968b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two short-wavelength cone opsins, frog (Xenopus laevis) violet and mouse UV, were expressed in mammalian COS1 cells, purified in delipidated form, and studied using cryogenic UV-vis spectrophotometry. At room temperature, the X. laevis violet opsin has an absorption maximum at 426 nm when generated with 11-cis-retinal and an absorption maximum of 415 nm when generated with 9-cis-retinal. The frog short-wavelength opsin has two different batho intermediates, one stable at 30 K (lambda(max) approximately 446 nm) and the other at 70 K (lambda(max) approximately 475 nm). Chloride ions do not affect the absorption maximum of the violet opsin. At room temperature, mouse UV opsin has an absorption maximum of 357 nm, while at 70 K, the pigment exhibits a bathochromic shift to 403 nm with distinct vibronic structure and a strong secondary vibronic band at 380 nm. We have observed linear relationships when analyzing the energy difference between the initial and bathochromic intermediates and the normalized difference spectra of the batho-shifted intermediates of rod and cone opsins. We conclude that the binding sites of these pigments change from red to green to violet via systematic shifts in the position of the primary counterion relative to the protonated Schiff base. The mouse UV cone opsin does not fit this trend, and we conclude that wavelength selection in this pigment must operate via a different molecular mechanism. We discuss the possibility that the mouse UV chromophore is initially unprotonated.
Collapse
Affiliation(s)
- B W Vought
- Department of Chemistry, Syracuse University, New York 13244-4100, USA
| | | | | | | | | |
Collapse
|
15
|
Lou J, Hashimoto M, Berova N, Nakanishi K. Enantioselective binding of an 11-cis-locked cyclopropyl retinal. The conformation of retinal in bovine rhodopsin. Org Lett 1999; 1:51-4. [PMID: 10822532 DOI: 10.1021/ol990048l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[formula: see text] The conformation of the retinal chromophore in rhodopsin is central for understanding the visual transduction process. The absolute twist around the 12-s bond of the chromophore in rhodopsin has been determined by studies with 11-cis-locked 11,12-cyclopropylretinal analogues (11S,12R)-2 and (11R,12S)-3, enantioselectively synthesized with the aid of an enzyme. The finding that enantiomer 2 binds to opsin while the other 3 does not defines the absolute sense of twist around the 12-s bond.
Collapse
Affiliation(s)
- J Lou
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
16
|
Max M, Surya A, Takahashi JS, Margolskee RF, Knox BE. Light-dependent activation of rod transducin by pineal opsin. J Biol Chem 1998; 273:26820-6. [PMID: 9756926 DOI: 10.1074/jbc.273.41.26820] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pineal gland expresses a unique member of the opsin family (P-opsin; Max, M., McKinnon, P. J., Seidenman, K. J., Barrett, R. K., Applebury, M. L., Takahashi, J. S., and Margolskee, R. F. (1995) Science 267, 1502-1506) that may play a role in circadian entrainment and photo-regulation of melatonin synthesis. To study the function of this protein, an epitope-tagged P-opsin was stably expressed in an embryonic chicken pineal cell line. When incubated with 11-cis-retinal, a light-sensitive pigment was formed with a lambdamax at 462 +/- 2 nm. P-opsin bleached slowly in the dark (t1/2 = 2 h) in the presence of 50 mM hydroxylamine. Purified P-opsin in dodecyl maltoside activated rod transducin in a light-dependent manner, catalyzing the exchange of more than 300 mol of GTPgammaS (guanosine 5'-O-(3-thiotriphosphate))/mol of P-opsin. The initial rate for activation (75 mol of GTPgammaS bound/mol of P-opsin/min at 7 microM) increased with increasing concentrations of transducin. The addition of egg phosphatidylcholine to P-opsin had little effect on the activation kinetics; however, the intrinsic rate of decay in the absence of transducin was accelerated. These results demonstrate that P-opsin is an efficient catalyst for activation of rod transducin and suggest that the pineal gland may contain a rodlike phototransduction cascade.
Collapse
Affiliation(s)
- M Max
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
The short wavelength visual pigment from Xenopus responsible for vision in the blue/violet portion of the spectrum was characterized by sequence spectroscopic analysis. The amino acid sequence was deduced by sequencing clones isolated by reverse transcription PCR, from retinal cDNA and genomic libraries. The gene contains 5 exons spanning 8.4 kb of genomic DNA and produces an mRNA of 2.4 kb in length. The deduced amino acid sequence predicts a protein of 347 amino acids with 76-78% identity to other short wavelength opsins. The mRNA encoding the Xenopus violet pigment was detected using in situ hybridization in cones, comprising a few percent of the total photoreceptors in the adult retina. The Xenopus violet opsin cDNA, modified to contain an epitope from the carboxyl terminus of bovine rhodopsin, was expressed in COS1 cells by transient transfection and analysed by UV-visible absorption spectroscopy. The protein expressed in COS1 cells migrated at 34 kD and was glycosylated at a single site in the amino terminus, exhibiting a diffuse pattern on SDS PAGE similar to bovine rhodopsin expressed in COS1 cells. Following incubation with 11-cis retinal, a light-sensitive pigment was formed with the lambdamax=425+/-2 nm. A Schiff base linkage between retinal and the violet opsin was demonstrated by acid denaturation. Xenopus violet opsin was sensitive to hydroxylamine in the dark, reacting with a half-time of 5 min at room temperature. This is the first group S pigment for amphibians. The pigment was expressed and purified from COS1 cells in a form that has permitted for the first time determination of the extinction coefficient, reactivity to hydroxylamine and presence of a Schiff base.
Collapse
Affiliation(s)
- D M Starace
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
18
|
Abstract
Skates (Raja erinacea and R. ocellata) are among the few animals that have an exclusively rod retina. However, skate rods are unusual in that they are capable of adapting to extremely high levels of illumination that initially saturate the rod photocurrent. This adaptive process restores the ability of the visual cells to respond to incremental photic stimuli and enables them to function under ambient conditions that are subserved by the cone mechanism in mixed (rod/cone) retinae. As a first step towards exploring the molecular basis of visual adaptation in the skate retina, we have cloned and analyzed the opsin cDNA from a skate retina library. The cDNA codes for a protein 354 amino acids (aa) long and 39.7 kDa predicted molecular mass, and labels a single abundant transcript of 1.7 kb in retinal RNA. Amino acid alignments and a parsimony analysis of nucleotide alignments show the skate opsin to be homologous to other rod opsins. An analysis of the aa sequence reveals a high degree of conservation of those residues thought to be important for most aspects of rhodopsin function. However, a few critical aa replacements may indicate alterations in the interactions of skate rhodopsin with other proteins in the phototransduction cascade. In particular, replacements of Glu150 with serine and Cys323 with leucine are in cytoplasmic domains thought to interact with transducin and rhodopsin kinase. The latter change eliminates one of the conserved acylation sites in the carboxyl terminal tail. These substitutions increase the similarity of the cytoplasmic domains of skate opsin to those of blue-sensitive visual pigments.
Collapse
Affiliation(s)
- J O'Brien
- Department of Ophthalmology and Visual Sciences, Univeristy of Illinois College of Medicine, Chicago 60612, USA
| | | | | |
Collapse
|
19
|
Starace DM, Knox BE. Activation of transducin by a Xenopus short wavelength visual pigment. J Biol Chem 1997; 272:1095-100. [PMID: 8995408 DOI: 10.1074/jbc.272.2.1095] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phototransduction in cones differs significantly from that in rods in sensitivity, kinetics, and recovery following exposure to light. The contribution that the visual pigment makes in determining the cone response was investigated biochemically by expressing a Xenopus violet cone opsin (VCOP) cDNA in COS1 cells and assaying the light-dependent activation of transducin. Light-exposed VCOP stimulated [35S]guanosine 5'-(gamma-thio)triphosphate nucleotide exchange on bovine rod transducin in a time-dependent manner with a half-time for activation of 0.75 min, similar to that of bovine rhodopsin. In exhaustive binding assays, VCOP and rhodopsin activity showed similar concentration dependence with half-maximal activation occurring at 0.02 mol of pigment/mol of transducin. Although VCOP was able to activate as many as 12 transducins per photoisomerization, rhodopsin catalyzed significantly more. When assays were performed with lambda > 420 nm illumination, VCOP exhibited rapid regeneration and high affinity for the photoregenerated 11-cis-retinal. Recycling of the chromophore and reactivation of the pigment resulted in multiple activations of transducin, whereas a maximum of 1 transducin per VCOP was activated under brief illumination. The decay of the active species formed following photobleaching was complete in <5 min, approximately 10-fold faster than that of rhodopsin. In vitro, VCOP activated rod transducin with kinetics and affinity similar to those of rhodopsin, but the active conformation decayed more rapidly and the apoprotein regenerated more efficiently with VCOP than with rhodopsin. These properties of the violet pigment may account for much of the difference in response kinetics between rods and cones.
Collapse
Affiliation(s)
- D M Starace
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
20
|
Abstract
Iodopsin, a dominant cone pigment in a chicken retina, has an absorption spectrum in longer wavelength region than rhodopsin. To account for this red-shift of iodopsin, we had proposed a structural model from retinal analogue experiments, in which iodopsin would have a relatively long distance between the protonated Schiff base nitrogen and the counterion. This was confirmed by a resonance Raman spectroscopy. The photochemical properties of iodopsin were studied and compared with those of rhodopsin, which revealed the following differences. The regeneration rate of iodopsin with 11-cis-retinal was 240 times faster than rhodopsin. Meta-iodopsin II, the signalling state of iodopsin, decayed about 100 times faster than meta-rhodopsin II. The Km value of meta-iodopsin II and rhodopsin kinase was lower than meta-rhodopsin II. These results are in consistent with rapid adaptation and low photosensitivity of cones relative to those of rods.
Collapse
Affiliation(s)
- T Yoshizawa
- Department of Information Systems Engineering, Faculty of Engineering, Osaka Sangyo University, Japan
| | | |
Collapse
|
21
|
Affiliation(s)
- W Gärtner
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
22
|
Abstract
Arrestins constitute a superfamily of regulatory proteins that down-regulate phosphorylated G-protein membrane receptors, including rod and cone photoreceptors and adrenergic receptors. The potential role of arrestin in color visual processes led us to identify a cDNA encoding a cone-like arrestin in Xenopus laevis, the principle amphibian biological model system. Alignment of 18 deduced amino acid sequences of all known arrestins from both invertebrate and vertebrate species reveals five arrestin families. Further analysis identifies 7 variable and 4 conservative arrestin structural motifs that may identify potential functional domains. The adaptive evolutionary relationship of Xenopus cone arrestin to the arrestin gene tree suggests high intrafamily homology and early gene duplication events.
Collapse
Affiliation(s)
- C M Craft
- Department of Cell and Neurobiology, University of Southern California School of Medicine, Mary D. Allen Laboratories, Doheny Eye Research Institute, San Pablo, Los Angeles 90033, USA
| | | |
Collapse
|