Wei M, Cui ZH, Li JW, Yan PS. Estimation of metabolisable energy and net energy of rice straw and wheat straw for beef cattle by indirect calorimetry.
Arch Anim Nutr 2018;
72:275-289. [PMID:
29972320 DOI:
10.1080/1745039x.2018.1482076]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two experiments were conducted to estimate the metabolisable energy (ME) and net energy (NE) of rice straw and wheat straw for beef cattle. In each experiment, 16 Wandong bulls (Chinese indigenous yellow cattle) were assigned to 4 dietary treatments in a completely randomised design. Four dietary treatments included one corn silage-concentrate basal diet and three test diets in which the basal diet was partly substituted by rice straw (Exp. 1) or wheat straw (Exp. 2) at 100, 300 and 600 g/kg. Total collection of faeces and urine was conducted for 5 consecutive days after a 2-week adaption period, followed by a 4-d period where gas exchange measurements were measured by an open-circuit respiratory cage. Linear regression equations of rice straw- or wheat straw-associated ME and NE contribution in test diets against rice straw or wheat straw substitution amount were developed to predict the ME and NE values of rice straw and wheat straw. These regression equations resulted in ME and NE values (dry matter basis) of 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg for wheat straw, respectively. The NE and ME requirement for maintenance of Wandong cattle fed a straw-based diet were 357 and 562 kJ·kg-0.75·d-1, respectively. The regression-derived ME and NE have lower standard errors and coefficients of variation than those estimated by any single substitution ratio. Our study found that the regression method based on multiple point substitution is more reliable than the substitution method for energy evaluation of feedstuffs for beef cattle.
Collapse