1
|
Blažič A, Guinard M, Leskovar T, O'Connor RP, Rems L. Long-term changes in transmembrane voltage after electroporation are governed by the interplay between nonselective leak current and ion channel activation. Bioelectrochemistry 2024; 161:108802. [PMID: 39243733 DOI: 10.1016/j.bioelechem.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Electroporation causes a temporal increase in cell membrane permeability and leads to prolonged changes in transmembrane voltage (TMV) in both excitable and non-excitable cells. However, the mechanisms of these TMV changes remain to be fully elucidated. To this end, we monitored TMV over 30 min after exposing two different cell lines to a single 100 µs electroporation pulse using the FLIPR Membrane Potential dye. In CHO-K1 cells, which express very low levels of endogenous ion channels, membrane depolarization following pulse exposure could be explained by nonselective leak current, which persists until the membrane reseals, enabling the cells to recover their resting TMV. In U-87 MG cells, which express many different ion channels, we unexpectedly observed membrane hyperpolarization following the initial depolarization phase, but only at 33 °C and not at 25 °C. We developed a theoretical model, supported by experiments with ion channel inhibitors, which indicated that hyperpolarization could largely be attributed to the activation of calcium-activated potassium channels. Ion channel activation, coupled with changes in TMV and intracellular calcium, participates in various physiological processes, including cell proliferation, differentiation, migration, and apoptosis. Therefore, our study suggests that ion channels could present a potential target for influencing the biological response after electroporation.
Collapse
Affiliation(s)
- Anja Blažič
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Manon Guinard
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Tomaž Leskovar
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Rodney P O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Zhang X, Zhang M, Lin J. Effect of pH on the In Vitro Degradation of Borosilicate Bioactive Glass and Its Modulation by Direct Current Electric Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7015. [PMID: 36234355 PMCID: PMC9570734 DOI: 10.3390/ma15197015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Controlled ion release and mineralization of bioactive glasses are essential to their applications in bone regeneration. Tuning the chemical composition and surface structure of glasses are the primary means of achieving this goal. However, most bioactive glasses exhibit a non-linear ion release behavior. Therefore, modifying the immersion environment of glasses through external stimuli becomes an approach. In this study, the ion release and mineralization properties of a borosilicate bioactive glass were investigated in the Tris buffer and K2HPO4 solutions with different pH. The glass had a faster ion release rate at a lower pH, but the overly acidic environment was detrimental to hydroxyapatite production. Using a direct current (DC) electric field as an external stimulus, the pH of the immersion solution could be modulated within a narrow range, thereby modulating ion release from the glass. As a result, significant increases in ion release were observed after three days, and the development of porous mineralization products on the glass surface after six days. This study demonstrates the effectiveness of the DC electric field in modulating the ion release of the bioactive glass in vitro and provides a potential way to regulate the degradation of the glass in vivo.
Collapse
Affiliation(s)
- Xuanyu Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Minhui Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jian Lin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Ge M, Xu D, Chen Z, Wei C, Zhang Y, Yang C, Chen Y, Lin H, Shi J. Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. NANO LETTERS 2021; 21:6764-6772. [PMID: 34342999 DOI: 10.1021/acs.nanolett.1c01313] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic-based theranostics feature a high efficiency, excellent tissue penetration, and minimal damage to normal tissues, are noninvasive, and are widely used in the diagnosis and therapy of clinical diseases. Herein, a conceptually novel magnetostrictive-piezoelectric nanocatalytic medicine (MPE-NCM) for tumor therapy is proposed by initiating an intratumoral magneto-driven and piezoelectric-catalyzed reaction using core-shell structured CoFe2O4-BiFeO3 magnetostrictive-piezoelectric nanoparticles (CFO-BFO NPs) under an alternating magnetic field. The CFO-BFO NPs catalyze the generation of cytotoxic reactive oxygen species (ROS): superoxide radicals (•O2-) and hydroxyl radicals (•OH). The simulation calculation demonstrates the highly controllable electric polarization, facilitating the above catalytic reactions under the magnetic stimulation. Both a detailed cell-level assessment and the tumor xenograft evaluation evidence the significant tumor eradication efficacy of MPE-NCM. This study proposes an original and novel magneto-responsive nanocatalytic modality for cancer therapy, which displays promising prospects for the future clinic translation owing to its excellent catalytic dynamic responsiveness, high therapeutic efficacy, and biosafety in vivo.
Collapse
Affiliation(s)
- Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chengyang Wei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
4
|
Ge M, Xu D, Chen Z, Wei C, Zhang Y, Yang C, Chen Y, Lin H, Shi J. Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. NANO LETTERS 2021; 21:6764-6772. [DOI: doi.org/10.1021/acs.nanolett.1c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chengyang Wei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
5
|
Stein EJ, Perkons NR, Wildenberg JC, Iyer SK, Hunt SJ, Nadolski GJ, Witschey WR, Gade TP. MR Imaging Enables Real-Time Monitoring of In Vitro Electrolytic Ablation of Hepatocellular Carcinoma. J Vasc Interv Radiol 2019; 31:352-361. [PMID: 31748127 DOI: 10.1016/j.jvir.2019.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate the capability of T2-weighted magnetic resonance (MR) imaging to monitor electrolytic ablation-induced cell death in real time. MATERIALS AND METHODS Agarose phantoms arranged as an electrolytic cell were exposed to varying quantities of electric charge under constant current to create a pH series. The pH phantoms were subjected to T2-weighted imaging with region of interest quantitation of the acquired signal intensity. Subsequently, hepatocellular carcinoma (HCC) cells encapsulated in an agarose gel matrix were subjected to 10 V of electrolytic ablation for variable lengths of time with and without concurrent T2-weighted MR imaging. Cellular death was confirmed by a fluorescent reporter. Finally, to confirm that real-time MR images corresponded to ablation zones, 10 V electrolytic ablations were performed followed by the addition of pH-neutralizing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer. RESULTS Analysis of MR imaging from agarose gel pH phantoms demonstrated a relationship between signal intensity and pH at the anodes and cathodes. The steep negative phase of the anode model (pH < 3.55) and global minimum of the cathode model (pH ≈ 11.62) closely approximated established cytotoxic pH levels. T2-weighted MR imaging demonstrated a strong correlation of ablation zones with regions of HCC cell death (r = 0.986; R2 = 0.916; P < .0001). The addition of HEPES buffer to the hydrogel resulted in complete obliteration of MR imaging-observed ablation zones, confirming that change in pH directly caused the observed signal intensity attenuation of the ablation zone. CONCLUSIONS T2-weighted MR imaging enabled the real-time detection of electrolytic ablation zones, demonstrating a strong correlation with histologic cell death.
Collapse
Affiliation(s)
- Elliot J Stein
- Department of Radiology, Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas R Perkons
- Department of Radiology, Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph C Wildenberg
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Srikant K Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J Hunt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory J Nadolski
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Terence P Gade
- Department of Radiology, Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
7
|
Gu T, Wang Y, Lu Y, Cheng L, Feng L, Zhang H, Li X, Han G, Liu Z. Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806803. [PMID: 30734370 DOI: 10.1002/adma.201806803] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/25/2019] [Indexed: 05/27/2023]
Abstract
Electrochemical therapy (EChT), by inserting electrodes directly into tumors to kill cancer cells under direct current (DC), is clinically used in several countries. In EChT, the drastic pH variation nearby the inserted electrodes is the main cause of tumor damage. However, its limited effective area and complex electrode configuration have hindered the clinical application of EChT in treating diverse tumor types. Herein, a conceptually new electric cancer treatment approach is presented through an electro-driven catalytic reaction with platinum nanoparticles (PtNPs) under a square-wave alternating current (AC). The electric current triggers a reaction between water molecules and chloride ions on the surface of the PtNPs, generating cytotoxic hydroxyl radicals. Such a mechanism, called electrodynamic therapy (EDT), enables effective killing of cancer cells within the whole electric field, in contrast to EChT, which is limited to areas nearby electrodes. Remarkable tumor destruction efficacy is further demonstrated in this in vivo EDT treatment with PtNPs. Therefore, this study presents a new type of cancer therapy strategy with a tumor-killing mechanism different from existing methods, using nanoparticles with electrocatalytic functions. This EDT method appears to be minimally invasive, and is able to offer homogeneous killing effects to the entire tumor with a relatively large size.
Collapse
Affiliation(s)
- Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yao Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yunhao Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
8
|
González MM, Morales DF, Cabrales LEB, Pérez DJ, Montijano JI, Castañeda ARS, González VGS, Posada OO, Martínez JA, Delgado AG, Martínez KG, Mon ML, Monzón KL, Ciria HMC, Beatón EO, Brooks SCA, González TR, Jarque MV, Mateus MAÓ, Rodríguez JLG, Calzado EM. Dose-response study for the highly aggressive and metastatic primary F3II mammary carcinoma under direct current. Bioelectromagnetics 2018; 39:460-475. [PMID: 29870083 DOI: 10.1002/bem.22132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
Abstract
Electrochemical treatment has been suggested as an effective alternative to local cancer therapy. Nevertheless, its effectiveness decreases when highly aggressive primary tumors are treated. The aim of this research was to understand the growth kinetics of the highly aggressive and metastatic primary F3II tumor growing in male and female BALB/c/Cenp mice under electrochemical treatment. Different amounts of electric charge (6, 9, and 18 C) were used. Two electrodes were inserted into the base, perpendicular to the tumor's long axis, keeping about 1 cm distance between them. Results have shown that the F3II tumor is highly sensitive to direct current. The overall effectiveness (complete response + partial response) of this physical agent was ≥75.0% and observed in 59.3% (16/27) of treated F3II tumors. Complete remission of treated tumors was observed in 22.2% (6/27). An unexpected result was the death of 11 direct current-treated animals (eight females and three males). It is concluded that direct current may be addressed to significantly affect highly aggressive and metastatic primary tumor growth kinetics, including the tumor complete response. Bioelectromagnetics. 39:460-475, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maraelys M González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Dasha F Morales
- Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Luis E B Cabrales
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Daniel J Pérez
- Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Juan I Montijano
- Instituto Universitario de Investigación de Matemáticas y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Antonio R S Castañeda
- Departamento de Telecomunicaciones, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Oscar O Posada
- Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | | | | | | | - Mayrel L Mon
- Centro de Inmunología Molecular, La Habana, Cuba
| | | | - Héctor M C Ciria
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Emilia O Beatón
- Departamento de Ingeniería Biomédica, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Soraida C A Brooks
- Servicio de Medicina Interna, Hospital Provincial Saturnino Lora, Santiago de Cuba, Cuba
| | - Tamara R González
- Dirección Municipal de Salud Pública, Servicio de Genética, Santiago de Cuba, Cuba
| | - Manuel V Jarque
- Servicio de Oncohematología, Hospital Dr. Antonio Béguez César, Santiago de Cuba, Cuba
| | - Miguel A Ó Mateus
- Servicio de Mastología, Hospital Oncológico Conrado Benítez, Santiago de Cuba, Cuba
| | - Jorge L G Rodríguez
- Departamento de Investigación e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Enaide M Calzado
- Departamento de Telecomunicaciones, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| |
Collapse
|
9
|
González MM, Aguilar CH, Pacheco FAD, Cabrales LEB, Reyes JB, Nava JJG, Ambrosio PE, Domiguez DS, Sierra González VG, Pupo AEB, Ciria HMC, Alemán EI, García FM, Rivas CB, Reina EC. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces ( Solanum tuberosum L.). Front Oncol 2018; 8:101. [PMID: 29725584 PMCID: PMC5917672 DOI: 10.3389/fonc.2018.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.
Collapse
Affiliation(s)
- Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Claudia Hernández Aguilar
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Flavio Arturo Domínguez Pacheco
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Luis Enrique Bergues Cabrales
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Juan Bory Reyes
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Juan José Godina Nava
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.,Departamento de Física, Centro de Investigaciones Avanzadas del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | - Paulo Eduardo Ambrosio
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Dany Sanchez Domiguez
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Ana Elisa Bergues Pupo
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Héctor Manuel Camué Ciria
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Elizabeth Issac Alemán
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Francisco Monier García
- Departamento de Telecomunicaciones, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Clara Berenguer Rivas
- Departamento de Farmacia, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
| | | |
Collapse
|
10
|
|
11
|
Holandino C, Teixeira CAA, de Oliveira FAG, Barbosa GM, Siqueira CM, Messeder DJ, de Aguiar FS, da Veiga VF, Girard-Dias W, Miranda K, Galina A, Capella MAM, Morales MM. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line. Bioelectrochemistry 2016; 111:83-92. [PMID: 27243447 DOI: 10.1016/j.bioelechem.2016.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 02/04/2023]
Abstract
Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT.
Collapse
Affiliation(s)
- Carla Holandino
- Laboratory of Multidisciplinary Pharmaceutical Sciences, College of Pharmacy, Center of Health Sciences (CCS), Federal University do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cesar Augusto Antunes Teixeira
- Laboratory of Multidisciplinary Pharmaceutical Sciences, College of Pharmacy, Center of Health Sciences (CCS), Federal University do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Alves Gomes de Oliveira
- Laboratory of Multidisciplinary Pharmaceutical Sciences, College of Pharmacy, Center of Health Sciences (CCS), Federal University do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gleyce Moreno Barbosa
- Laboratory of Multidisciplinary Pharmaceutical Sciences, College of Pharmacy, Center of Health Sciences (CCS), Federal University do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Monteiro Siqueira
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Jardim Messeder
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry, CCS, Federal University do Rio de Janeiro, Brazil
| | - Fernanda Silva de Aguiar
- Laboratory of Multidisciplinary Pharmaceutical Sciences, College of Pharmacy, Center of Health Sciences (CCS), Federal University do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Venicio Feo da Veiga
- Laboratory of Electron Microscopy, Institute of Microbiology Prof. Paulo de Góes (IMPPG), CCS, UFRJ, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry, CCS, Federal University do Rio de Janeiro, Brazil
| | | | - Marcelo Marcos Morales
- Laboratory of Molecular and Cellular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Gomes MDN, Cardoso JS, Leitão AC, Quaresma CH. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains. Bioelectromagnetics 2016; 37:234-43. [PMID: 27018544 DOI: 10.1002/bem.21970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects.
Collapse
Affiliation(s)
- Marina das Neves Gomes
- Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Brazil
| | - Janine Simas Cardoso
- Laboratório de Radiobiologia Molecular, Programa de Biologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Alvaro Costa Leitão
- Laboratório de Radiobiologia Molecular, Programa de Biologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Carla Holandino Quaresma
- Laboratório Multidisciplinar de Ciências Farmacêuticas, Departamento de Medicamentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Song B, Wen P, Ahfock T, Li Y. Numeric Investigation of Brain Tumor Influence on the Current Distributions During Transcranial Direct Current Stimulation. IEEE Trans Biomed Eng 2016; 63:176-87. [DOI: 10.1109/tbme.2015.2468672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Luján E, Schinca H, Olaiz N, Urquiza S, Molina F, Turjanski P, Marshall G. Optimal dose-response relationship in electrolytic ablation of tumors with a one-probe-two-electrode device. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Meir A, Rubinsky B. Electrical impedance tomography of electrolysis. PLoS One 2015; 10:e0126332. [PMID: 26039686 PMCID: PMC4454594 DOI: 10.1371/journal.pone.0126332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/01/2015] [Indexed: 11/27/2022] Open
Abstract
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.
Collapse
Affiliation(s)
- Arie Meir
- Biophysics Graduate Program, University of California, Berkeley, California, United States of America
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
16
|
Meir A, Hjouj M, Rubinsky L, Rubinsky B. Magnetic resonance imaging of electrolysis. Sci Rep 2015; 5:8095. [PMID: 25659942 PMCID: PMC4321173 DOI: 10.1038/srep08095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.
Collapse
Affiliation(s)
- Arie Meir
- Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA 94720
| | - Mohammad Hjouj
- Medical Imaging Department; Faculty of Health Professions, Al-Quds University/Abu Dies/Jerusalem
| | - Liel Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720
| | - Boris Rubinsky
- 1] Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA 94720 [2] Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720
| |
Collapse
|
17
|
Cury FL, Bhindi B, Rocha J, Scarlata E, El Jurdi K, Ladouceur M, Beauregard S, Vijh AK, Taguchi Y, Chevalier S. Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 2014; 104:1-9. [PMID: 25578541 DOI: 10.1016/j.bioelechem.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022]
Abstract
Minimally invasive therapies are increasingly in demand for organ-confined prostate tumors. Electrochemical therapy (EChT) is attractive, as it relies on locally-induced reduction-oxidation reactions to kill tumor cells. Its efficacy for prostate cancer was assessed in human PC-3 and LNCaP tumor xenografts growing subcutaneously in nude mice (n = 80) by applying 2 Stainless Steel vs. 4 Platinum-Iridium (Pt-Ir) electrodes to deliver current densities of 10 to 35 mA/cm(2) for 30 or 60 min. The procedure was uneventful in 90% of mice. No difference in tumor vs. body temperature was observed. Changes at electrode-tumor junctions were immediate, with dryness and acidity (pH2-3) at the anode and oedema and alkalinity (pH10-12) at the cathode. This was accompanied by cellular alterations, found more pronounced at the cathode. Such acidic and alkaline conditions were cytotoxic in vitro and dissolved cells at pH>10. In mice, tumor destruction was extensive by 24h with almost undetectable blood prostate specific antigen (LNCaP model) and covered the whole tumor surface by 4 days. EChT was most efficient at 25-30 mA/cm(2) for 60 min, yielding the longest recurrence-free survival and higher cure rates, especially with 4 Pt-Ir electrodes. EChT is a promising option to optimize for organ-confined prostate tumors.
Collapse
Affiliation(s)
- Fabio L Cury
- Urologic-Oncology Research Laboratory, McGill University Health Center Research Institute, Montreal, Quebec, Canada; Division of Radiation Oncology, McGill University Health Center, Montreal, Quebec, Canada
| | - Bimal Bhindi
- Division of Urology, University of Toronto, Toronto, Ontario, Canada
| | - Joice Rocha
- Urologic-Oncology Research Laboratory, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Eleonora Scarlata
- Urologic-Oncology Research Laboratory, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Katia El Jurdi
- Urologic-Oncology Research Laboratory, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Michel Ladouceur
- Institut de Recherche d'Hydro Québec (IREQ), Varennes, Quebec, Canada
| | | | - Ashok K Vijh
- Institut de Recherche d'Hydro Québec (IREQ), Varennes, Quebec, Canada
| | - Yosh Taguchi
- Division of Urology, Dept. of Surgery, McGill University, Montreal, Quebec, Canada
| | - Simone Chevalier
- Urologic-Oncology Research Laboratory, McGill University Health Center Research Institute, Montreal, Quebec, Canada; Division of Urology, Dept. of Surgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Czymek R, Nassrallah J, Gebhard M, Schmidt A, Limmer S, Kleemann M, Bruch HP, Hildebrand P. Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo. Surg Oncol 2012; 21:79-86. [DOI: 10.1016/j.suronc.2010.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/11/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
19
|
Linkov G, Branski RC, Amin M, Chernichenko N, Chen CH, Alon G, Langmore S, Wong RJ, Kraus DH. Murine model of neuromuscular electrical stimulation on squamous cell carcinoma: potential implications for dysphagia therapy. Head Neck 2011; 34:1428-33. [PMID: 22083666 DOI: 10.1002/hed.21935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/03/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dysphagia is a potential consequence of treatment for head and neck cancer. Neuromuscular electrical stimulation (NMES) has evolved as a treatment option, with the goal of improved swallow function in patients with chronic dysphagia. However, the effects of NMES on tumorigenicity are unknown and often confound the initiation of this therapy, potentially limiting its efficacy in treating patients with head and neck cancer. METHODS Squamous cell carcinoma was grown in the flank of athymic, nude mice. Mice were randomized into treatment and control groups; the experimental group received daily NMES directly to the flank for 8 days. RESULTS Tumor volumes, recorded on days 0, 3, 7, and 10, demonstrated no significant differences between groups on each day of measurement. Immunohistochemical analysis of apoptosis, proliferation, and vascularization also failed to demonstrate statistically significant differences between treated and untreated groups. CONCLUSIONS NMES does not promote the growth of underlying tumor in our model. These data may provide preliminary evidence that applying electrical stimulation over the muscles of the anterior neck does not increase the risk of tumorigenicity. Early initiation of NMES in this challenging population may be feasible from an oncologic standpoint.
Collapse
Affiliation(s)
- Gary Linkov
- Head and Neck Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiménez RP, Pupo AEB, Cabrales JMB, Joa JAG, Cabrales LEB, Nava JJG, Aguilera AR, Mateus MAO, Jarque MV, Brooks SCA. 3D Stationary electric current density in a spherical tumor treated with low direct current: An analytical solution. Bioelectromagnetics 2010; 32:120-30. [DOI: 10.1002/bem.20611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 07/26/2010] [Indexed: 11/10/2022]
|
21
|
Turjanski P, Olaiz N, Abou-Adal P, Suárez C, Risk M, Marshall G. pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Miklavčič D, Šemrov D, Valenčič V, Serša G, Vodovnik L. Tumor Treatment by Direct Electric Current: Computation of Electric Current and Power Density Distribution. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379709009837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
von Euler H, Nilsson E, Lagerstedt AS, Olsson JM. Development of A Dose-Planning Method for Electrochemical Treatment of Tumors: A Study of Mammary Tissue in Healthy Female CD Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379909012903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Jarm T, Ĉmazˆar M, Serŝa G, Miklavĉiĉ D. Blood Perfusion in a Murine Fibrosarcoma Tumor Model After Direct Current Electrotherapy a Study with86Rb Extraction Technique. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379809022572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Berendson J, Olsson JM. Bioelectrochemical Aspects of the Treatment of Tissue with Direct Current. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379809012883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Vogl TJ, Mayer HP, Zangos S, Selby JB, Ackermann H, Mayer FB. Prostate cancer: MR imaging-guided galvanotherapy--technical development and first clinical results. Radiology 2007; 245:895-902. [PMID: 18024456 DOI: 10.1148/radiol.2453061623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively evaluate the safety and effectiveness of magnetic resonance (MR) imaging-guided galvanotherapy in prostate cancer. MATERIALS AND METHODS This prospective study was approved and authorized by the institutional review board, and patients gave informed consent. Forty-four men (mean age, 63.1 years) with histologically proved prostate cancer were treated with galvanotherapy. After transgluteal puncture of the prostate with local anesthesia, two MR imaging-compatible electrodes were positioned under MR imaging guidance in the periphery of the right and left lobes of the prostate so that they had direct tumor contact. The patients were treated three times in 1-week intervals, and direct current was applied to the localized cancer in the prostate gland with a total charge of 350 coulombs. Follow-up with laboratory testing (prostate-specific antigen [PSA] levels) and endorectal MR imaging with tumor volume measurement was performed 3, 6, and 12 months after the procedure. The Friedman test was used to compare tumor volumes and PSA levels across the four time points. RESULTS All patients tolerated MR imaging-guided galvanotherapy well without any major side effects or complications. Six patients had some reversible difficulty with urination, and five reported temporary unilateral leg paresthesia. Tumor volume as determined with MR imaging decreased from a pretherapeutic median of 1.90 to 1.12 cm(3), which corresponded to a significant (P < .01) reduction of 41%. One patient (2%) had complete remission and 18 (41%) had partial remission at follow-up 12 months after therapy. Twenty-three patients (52%) were classified as having stable disease. Two patients (5%) had progressive disease. Median PSA levels decreased in the 12-month control period from 7.05 to 2.4 ng/mL (66%, P < .01). CONCLUSION MR imaging-guided galvanotherapy is a safe procedure and can result in local control of prostatic carcinoma, with a concomitant reduction in the PSA level. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/245/2/895/DC1.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Johann Wolfgang Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
von Euler H, Stråhle K, Thörne A, Yongqing G. Cell proliferation and apoptosis in rat mammary cancer after electrochemical treatment (EChT). Bioelectrochemistry 2004; 62:57-65. [PMID: 14990326 PMCID: PMC7129577 DOI: 10.1016/j.bioelechem.2003.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/25/2003] [Accepted: 10/10/2003] [Indexed: 11/22/2022]
Abstract
Background: Several authors have recently reported encouraging results from Electrochemical treatment (EChT) in malignant tumours. However, EChT is not established and mechanisms are not completely understood. In vivo studies were conducted to evaluate the toxic changes and effectiveness of EChT on an animal tumour model. Methods: Tumours were induced by injecting cells from the R3230AC rat mammary tumour cell line clone D subcutaneously, in 28 female Fischer 344 rats. EChT was conducted by inserting a platinum electrode into the tumours. The positive and negative control groups were subjected to the same conditions but without current. The rats were kept for 0, 7 or 14 days post-treatment. Three hours prior to euthanasia an i.p. injection of Bromodioxyuridine (BrdU) was given. The rats were euthanized, the lesions extirpated and samples were collected for histopathological, and immunohistochemical examination. Results: Significant changes in cell proliferation rate were seen both in the cathode and anode regions. Apoptosis were induced in the anodic treated area outside the primary necrosis, detected with the TUNEL method. Discussion: The results suggest that secondary cell destruction was caused by necrosis with cathodic EChT and apoptosis or necrosis with anodic EChT.
Collapse
Affiliation(s)
- H von Euler
- Faculty of Veterinary Medicine, Department of Small Animal Clinical Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7037, S-750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
28
|
von Euler H, Olsson JM, Hultenby K, Thörne A, Lagerstedt AS. Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochemistry 2003; 59:89-98. [PMID: 12699824 DOI: 10.1016/s1567-5394(03)00006-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Electrochemical treatment (EChT) has been taken under serious consideration as being one of several techniques for local treatment of malignancies. The advantage of EChT is the minimal invasive approach and the absence of serious side effects. Macroscopic, histopathological and ultra-structural findings in liver following a four-electrode configuration (dog) and a two-electrode EChT design (dog and rat) were studied. MATERIALS AND METHODS 30 female Sprague-Dawley rats and four female beagle dogs were studied with EChT using Platinum:Iridium electrodes and the delivered dose was 5, 10 or 90 C (As). After EChT, the animals were euthanized. RESULTS The distribution of the lesions was predictable, irrespective of dose and electrode configuration. Destruction volumes were found to fit into a logarithmic curve (dose-response). Histopathological examination confirmed a spherical (rat) and cylindrical/ellipsoidal (dog) lesion. The type of necrosis differed due to electrode polarity. Ultra-structural analysis showed distinct features of cell damage depending on the distance from the electrode. Histopathological and ultra-structural examination demonstrated that the liver tissue close to the border of the lesion displayed a normal morphology. CONCLUSIONS The in vivo dose-planning model is reliable, even in species with larger tissue mass such as dogs. A multi-electrode EChT-design could obtain predictable lesions. The cellular toxicity following EChT is clearly identified and varies with the distance from the electrode and polarity. The distinct border between the lesion and normal tissue suggests that EChT in a clinical setting for the treatment of liver tumours can give a reliable destruction margin.
Collapse
Affiliation(s)
- Henrik von Euler
- Department of Small Animal Clinical Sciences, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Jarm T, Cemazar M, Steinberg F, Streffer C, Sersa G, Miklavcic D. Perturbation of blood flow as a mechanism of anti-tumour action of direct current electrotherapy. Physiol Meas 2003; 24:75-90. [PMID: 12636188 DOI: 10.1088/0967-3334/24/1/306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anti-tumour effects of direct current electrotherapy are attributed to different mechanisms depending on the electrode configuration and on the parameters of electric current. The effects mostly arise from the electrochemical products of electrolysis. Direct toxicity of these products to tumour tissue is, however, not a plausible explanation for the observed tumour growth retardation in the case when the electrodes are placed into healthy tissue surrounding the tumour and not into the tumour itself. The hypothesis that the anti-tumour effectiveness of electrotherapy could result from disturbed blood flow in tumours was tested by the measurement of changes in blood perfusion and oxygenation in tumours with three different methods (in vivo tissue staining with Patent Blue Violet dye, polarographic oximetry, near-infrared spectroscopy). The effects induced by electrotherapy were evaluated in two experimental tumour models: Sa-1 fibrosarcoma in A/J mice and LPB fibrosarcoma in C57B1/6 mice. We found that perfusion and oxygenation were significantly decreased after electrotherapy. Good agreement between the results of different methods was observed. The effect of electrotherapy on local perfusion of tumours is probably the prevalent mechanism of anti-tumour action for the particular type of electrotherapy used in the study. The importance of this effect should be considered for the optimization of electrotherapy protocols in experimental and clinical trials. The non-invasive technique of near-infrared spectroscopy proved to be a reliable method for detecting perfusion and oxygenation changes in small solid tumours.
Collapse
Affiliation(s)
- Tomaz Jarm
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
30
|
von Euler H, Söderstedt A, Thörne A, Olsson JM, Yongqing G. Cellular toxicity induced by different pH levels on the R3230AC rat mammary tumour cell line. An in vitro model for investigation of the tumour destructive properties of electrochemical treatment of tumours. Bioelectrochemistry 2002; 58:163-70. [PMID: 12414322 DOI: 10.1016/s1567-5394(02)00154-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the cellular toxicity of different pH levels on the R3230AC mammary tumour cell line (clone-D) in vitro and to determine in what way the pH affects the tumour cells. The results could be used to interpret the cell damaging effects seen in electrochemical treatment of tumours (EChT), where pH alteration in tissue is the major event. METHODS Tumour cells were treated with pH 3.5, 5, 7, 9, 10 and 11 for 10, 20 or 30 min, respectively, followed by studies with the viability assay 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyl tetrazolium bromide (methyltetrazolium (MTT)), morphological observation in phase contrast microscope (PCM) and light microscope, nucleotide analogue incorporation (BrdU; 5-Brdmo-2'-deoxyuridine), Caspase-3 activity measurement and detection of DNA fragmentation by an agarose gel electrophoresis. RESULTS In the viability assay, it was found that different pH levels had cytotoxic effects; these effects were dependent on the pH value and on the time of exposure at a given pH. Morphologically, cells in pH 3.5 and 5 had shrunk, were rounded and had condensed chromatin, whereas prominent cell swelling and nuclear expansion were seen in the pH 9- and 10-treated cells. Gross cytolysis was found in pH 11. A BrdU incorporation assay indicated that proliferation rate is inhibited markedly both with decreasing and increasing pH. Significant Caspase-3 activity was found in pH 3.5 and 5 groups. Caspase-3 levels for the alkaline exposure were equal or below the normal control. DNA ladder formation, a characteristic of apoptosis, was only visualised in the treatment of pH 3.5 for 30 min. CONCLUSIONS pH changes inhibit cell proliferation and decrease cell viability. The pathway of killing tumour cell in low pH probably has at least two directions: apoptosis and cell necrosis, whereas high pH results in only cell necrosis. The study suggests that low pH environment can induce apoptosis in unphysiological condition comparable with tissue pH at EChT. In addition, it seems that R3230AC mammary tumour cells are more tolerant to high pH than to acidic changes. This supports the theory that anodic EChT should be more efficient than cathodic.
Collapse
Affiliation(s)
- Henrik von Euler
- Department of Small Animal Clinical Sciences, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences (SLU), P.O. Box 7037, SE-750 07 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Ghannam MM, El-Gebaly RH, Gaber MH, Ali FM. INHIBITION OF EHRLICH TUMOR GROWTH IN MICE BY ELECTRIC INTERFERENCE THERAPY (IN VIVO STUDIES). Electromagn Biol Med 2002. [DOI: 10.1081/jbc-120015999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
von Euler H, Nilsson E, Olsson JM, Lagerstedt AS. Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours. Bioelectrochemistry 2001; 54:117-24. [PMID: 11694391 DOI: 10.1016/s1567-5394(01)00118-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND A reinvented technique for tumour therapy, electrochemical treatment (EChT), is attracting increasing attention. This study compared results from treatment of liver and mammary tissue focusing on destruction and pH changes in the tissue close to the treatment electrodes. Subsequently, data were compared with a dose-planning model. METHODS Mammary or liver tissue in 50 adult female Sprague Dawley rats was given EChT with a constant, direct current. The electrodes used were Pt/Ir (9:1) with spherical tips. In situ pH measurements were taken with a micro-combination glass electrode. RESULTS Spherical lesions were produced in both liver and mammary tissue. No significant difference was detected when comparing the size of the lesions in the two kinds of tissue. Similar pH profiles were obtained in tissue surrounding the electrodes, with pH values changing rapidly from unphysiological to neutral status within the space of a few millimetres. The pH at the border of the macroscopic destruction zone, regardless of tissue type or coulomb dosage, correlated well with specific values (4.5-5.5 at the anode and between 9 and 10 at the cathode). CONCLUSION The analogous destruction patterns in mammary and liver tissue support the hypothesis that EChT has similar results in at least these two different types of tissue. This implies that the destructive pattern caused by the treatment may be the same also in tumours.
Collapse
Affiliation(s)
- H von Euler
- Department of Small Animal Clinical Sciences, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences (SLU), P.O. Box 7037, SE-750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
33
|
Cabrales LB, Ciria HC, Bruzón RP, Quevedo MS, Aldana RH, De Oca LM, Salas MF, Peña OG. Electrochemical treatment of mouse Ehrlich tumor with direct electric current. Bioelectromagnetics 2001; 22:316-22. [PMID: 11424154 DOI: 10.1002/bem.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrochemical treatment of cancer utilizes direct electric current (DEC) to produce direct alterations and chemical changes in tumors. However, the DEC treatment is not established and mechanisms are not well understood. In vivo studies were conducted to evaluate the effectiveness of DEC on animal tumor models. Ehrlich tumors were implanted subcutaneously in sixty male BALB/c mice. When the tumor volumes reached 850 mm(3), four platinum electrodes were inserted into the tumors. DEC of 4 mA was applied for 21 min to the treated group; the total charge was 5 C. The healthy and sick control groups were subjected to the same conditions but without DEC. Hematological and chemical parameters as well as histopathological and peritumoral findings were studied. After the electrochemical therapy it was observed that both tumor volume decrease and necrosis percentage increase were significant in the treated group. Moreover, 24 h after treatment an acute inflammatory response, as well as sodium ion decrease, and potassium ion and spleen weight increase were observed in this group. It was concluded that both electrochemical reactions (fundamentally those in which reactive oxygen species are involved), and immune system stimulation induced by cytotoxic action of the DEC could constitute the most important antitumor mechanisms.
Collapse
Affiliation(s)
- L B Cabrales
- División de Magnetoterapia, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jarm T, Wickramasinghe YA, Deakin M, Cemazar M, Elder J, Rolfe P, Sersa G, Miklavcic D. Blood perfusion of subcutaneous tumours in mice following the application of low-level direct electric current. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 471:497-506. [PMID: 10659183 DOI: 10.1007/978-1-4615-4717-4_59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Electrotherapy with low-level direct electric current has been proved to be an effective local treatment of solid tumours. In the presented study an attempt was made to evaluate the effect of a single treatment with electrotherapy on blood perfusion of solid subcutaneous fibrosarcoma Sa-1 tumours in A/J mice. The tissue-staining method with Patent blue-violet dye, the rubidium extraction technique, and the noninvasive near-infrared spectroscopy method were used for this purpose. Results of all methods indicate that perfusion and subsequently oxygenation of tumours were reduced due to application of electrotherapy.
Collapse
Affiliation(s)
- T Jarm
- Faculty of Electrical Engineering, University of Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nilsson E, von Euler H, Berendson J, Thörne A, Wersäll P, Näslund I, Lagerstedt AS, Narfström K, Olsson JM. Electrochemical treatment of tumours. Bioelectrochemistry 2000; 51:1-11. [PMID: 10790774 DOI: 10.1016/s0302-4598(99)00073-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The electrochemical treatment (EChT) of tumours implies that tumour tissue is treated with a continuous direct current through two or more electrodes placed in or near the tumour. The treatment offers considerable promise of a safe, simple and relatively noninvasive anti-tumour therapy for treatment of localised malignant as well as benign tumours. Although more than 10,000 patients have been treated in China during the past 10 years, EChT has not yet been universally accepted. The reason for this is the lack of essential preclinical studies and controlled clinical trials. Uncertainties regarding the destruction mechanism of EChT also hinder the development of an optimised and reliable dose-planning methodology. This article reviews the collected Chinese and occidental experiences of the electrochemical treatment of tumours, alone and in combination with other therapies. The current knowledge of the destruction mechanism underlying EChT is presented along with different approaches towards a dose planning methodology. In addition, we discuss our view of different important parameters that have to be accounted for, if clinical trials are to be initiated outside of China.
Collapse
Affiliation(s)
- E Nilsson
- Department of Chemical Engineering and Technology, Applied Electrochemistry, Royal Institute of Technology (KTH), Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Development of a dosage method for electrochemical treatment of tumours: a simplified mathematical model. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00157-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Abstract
The enzyme ribonucleotide reductase (RR) controls the synthesis of DNA precursors and thus plays a pivotal role in cell growth. Since the free-radical-containing active-site of this enzyme can be disabled by a lone electron, low-level direct electric current should have an inhibitory effect on RR and, thus, on uncontrolled cell proliferation. This hypothesis is strongly supported by the results of several cancer electrotherapy studies reported over the years.
Collapse
|
39
|
Miklavcˇicˇ D, Jarm T, Cˇemazˇar M, Sersˇa G, An D, Belehradek J, Mir L. Tumor treatment by direct electric current Tumor perfusion changes. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0302-4598(96)05190-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Sersa I, Beravs K, Dodd NJ, Zhao S, Miklavcic D, Demsar F. Electric current density imaging of mice tumors. Magn Reson Med 1997; 37:404-9. [PMID: 9055231 DOI: 10.1002/mrm.1910370318] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The use of electric current density imaging (CDI) to map spatial distribution of electric currents through tumors is presented. Specifically, a method previously tested on phantoms was implemented in vivo and in vitro for mapping electric current pulses of the same order of magnitude (j approximately 2500 A/m2) as in electrochemotherapy through T50/80 mammary carcinomas, B-16 melanomas and SA-1 sarcomas. A technically simplified method of electric current density imaging is discussed as well. Three geometries of electrodes (flat-flat, point-point, point-flat) indicate altered electric current distribution for the same tumor. This indicates that the method can be used for monitoring the effects of electrochemotherapy as a function of electrode geometry.
Collapse
Affiliation(s)
- I Sersa
- Jozef Stefan Institute, University of Ljubijana, Slovenia
| | | | | | | | | | | |
Collapse
|
41
|
Numerical calculation and comparison of electromagnetic field parameters inside biological tissue. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0302-4598(94)87021-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
|