1
|
Shostak DM, Constantin S, Flannery J, Wray S. Acetylcholine regulation of GnRH neuronal activity: A circuit in the medial septum. Front Endocrinol (Lausanne) 2023; 14:1147554. [PMID: 36950690 PMCID: PMC10025473 DOI: 10.3389/fendo.2023.1147554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility by regulating gonadotrophs in the anterior pituitary. While it is known that acetylcholine (ACh) influences GnRH secretion, whether the effect is direct or indirect, and the specific ACh receptor (AChR) subtype(s) involved remain unclear. Here, we determined 1) whether ACh can modulate GnRH cellular activity and 2) a source of ACh afferents contacting GnRH neurons. Calcium imaging was used to assay GnRH neuronal activity. With GABAergic and glutamatergic transmission blocked, subtype-specific AChR agonists and antagonists were applied to identify direct regulation of GnRH neurons. ACh and nicotine caused a rise in calcium that declined gradually back to baseline after 5-6 min. This response was mimicked by an alpha3-specific agonist. In contrast, muscarine inhibited GnRH calcium oscillations, and blocking M2 and M4 together prevented this inhibition. Labeling for choline acetyltransferase (ChAT) and GnRH revealed ChAT fibers contacting GnRH neurons, primarily in the medial septum (MS), and in greater number in females than males. ChAT positive cells in the MS are known to express p75NGFRs. Labeling for p75NGFR, ChAT and GnRH indicated that ChAT fibers contacting GnRH cells originate from cholinergic cells within these same rostral areas. Together, these results indicate that cholinergic cells in septal areas can directly regulate GnRH neurons.
Collapse
|
2
|
Vieyra-Valdez E, Linares-Culebro R, Rosas-Gavilán G, Ramírez-Hernández D, Domínguez-Casalá R, Morales-Ledesma L. Roles of the cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation: Experimental evidence. Brain Res Bull 2020; 165:129-138. [PMID: 32966849 DOI: 10.1016/j.brainresbull.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Reproduction is the biological process that sustains life. It is regulated by a neuro-hormonal mechanism that is synchronized by the interaction among the hypothalamus, hypophysis, and ovaries. Ovulation is regulated by the secretion of the gonadotropin-releasing hormone (GnRH), which stimulates the release of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition to these neuroendocrine signals, other signals originating from the central nervous system, hypophysis, thyroid, adrenal glands, and the ovary itself are also involved. One of the neurotransmission systems involved in the regulation of ovulation is the cholinergic system, which not only participates in the regulation of reproductive functions but also modulates motor coordination, thermoregulation, and cognitive function. In mammals, the vagus nerve is one of the pathways through which acetylcholine reaches the ovary, and this pathway also participates in the regulation of ovulation. However, this regulation depends on the age of the animal (prepubertal or adult) and its endocrine status. The present review analyzes evidence of the roles of the central and peripheral cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation as well as their roles in the development and persistence of polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Elizabeth Vieyra-Valdez
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico; Biology of Reproduction Research Unit, Laboratorio de Investigación en Cronobiología y Reproducción, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico.
| | - Rosa Linares-Culebro
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico.
| | - Gabriela Rosas-Gavilán
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico.
| | - Deyra Ramírez-Hernández
- Facultad de Estudios Superiores Zaragoza Campus III, UNAM, CP90640, San Miguel Contla, Tlaxcala, Mexico.
| | - Roberto Domínguez-Casalá
- Biology of Reproduction Research Unit, Laboratorio de Investigación en Cronobiología y Reproducción, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico.
| | - Leticia Morales-Ledesma
- Biology of Reproduction Research Unit, Physiology of Reproduction Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000, México City, Mexico.
| |
Collapse
|
3
|
Arai Y, Ishii H, Kobayashi M, Ozawa H. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells. J Physiol Sci 2017; 67:313-323. [PMID: 27343174 PMCID: PMC10717232 DOI: 10.1007/s12576-016-0464-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Life Science, International Christian University, 3-10-2, Osawa, Mitaka-shi, Tokyo, 181-8585, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Makito Kobayashi
- Department of Life Science, International Christian University, 3-10-2, Osawa, Mitaka-shi, Tokyo, 181-8585, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
4
|
Espinosa-Valdez A, Flores A, Arrieta-Cruz I, Cárdenas M, Chavira R, Domínguez R, Cruz ME. The participation of the muscarinic receptors in the preoptic-anterior hypothalamic areas in the regulation of ovulation depends on the ovary. Reprod Biol Endocrinol 2016; 14:75. [PMID: 27809846 PMCID: PMC5095983 DOI: 10.1186/s12958-016-0208-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Muscarinic receptors (mAChRs) of the preoptic and anterior hypothalamus areas (POA-AHA) regulate ovulation in an asymmetric manner during the estrous cycle. The aims of the present study were to analyze the effects of a temporal blockade of mAChRs on either side of the POA-AHA performed in diestrus-2 rats on ovulation, the levels of estradiol, follicle stimulating hormone (FSH) and luteinizing hormone (LH) and the mechanisms involved in changes in ovulation. METHODS Cyclic rats on diestrus-2 day were anesthetized and randomly assigned to the following groups: 1) microinjection of 1 μl of saline or atropine solution (62.5 ng) in the left or right POA-AHA; 2) removal (unilateral ovariectomty, ULO) of the left (L-ULO) or right (R-ULO) ovary, and 3) rats microinjected with atropine into the left or right POA-AHA plus L-ULO or R-ULO. The ovulation rate and the number of ova shed were measured during the predicted estrus, as well as the levels of estradiol, FSH and LH during the predicted proestrus and the effects of injecting synthetic LH-releasing hormone (LHRH) or estradiol benzoate (EB). RESULTS Atropine in the left POA-AHA decreased both the ovulation rate and estradiol and LH levels on the afternoon of proestrus, also LHRH or EB injection restored ovulation. L- or R-ULO resulted in a lower ovulation rate and smaller number of ova shed, and only injection of LHRH restored ovulation. EB injection at diestrus-2 restored ovulation in animals with L-ULO only. The levels of estradiol, FSH and LH in rats with L-ULO were higher than in animals with unilateral laparotomy. In the group microinjected with atropine in the left POA-AHA, ovulation was similar to that in ULO rats. In contrast, atropine in the right POA-AHA of ULO rats blocked ovulation, an action that was restored by either LHRH or EB injection. CONCLUSIONS These results indicated that the removal of a single ovary at noon on diestrus-2 day perturbed the neuronal pathways regulating LH secretion, which was mediated by the muscarinic system connecting the right POA-AHA and the ovaries.
Collapse
Affiliation(s)
- Adriana Espinosa-Valdez
- Biology of Reproduction Research Unit, Laboratory of Neuroendocrinology, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000 Mexico City, Mexico
| | - Angélica Flores
- Biology of Reproduction Research Unit, Laboratory of Neuroendocrinology, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000 Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics, México City, Mexico
| | - Mario Cárdenas
- Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, México City, Mexico
| | - Roberto Chavira
- Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, México City, Mexico
| | - Roberto Domínguez
- Biology of Reproduction Research Unit, Laboratory of Neuroendocrinology, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000 Mexico City, Mexico
| | - María Esther Cruz
- Biology of Reproduction Research Unit, Laboratory of Neuroendocrinology, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000 Mexico City, Mexico
| |
Collapse
|
5
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
6
|
Cruz ME, Flores A, Domínguez R. The cholinergic system of the preoptic-anterior hypothalamic areas regulates the ovarian follicular population in an asymmetric way. Endocrine 2014; 47:913-22. [PMID: 24748224 DOI: 10.1007/s12020-014-0266-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Atropine implants in the preoptic-anterior hypothalamic areas (POA-AHA) block ovulation. The blocking effects depend on the side of POA-AHA and the day of the estrous cycle in which the implants are inserted. Since ovulation is the result of the growth and differentiation of ovarian follicles, the purpose of this study was to analyze the changes in follicular and atresia population in the ovaries of non-ovulating rats resulting from the unilateral atropine implants in the POA-AHA. Groups of cyclic rats were implanted with atropine or cholesterol (sham treatment group) in the left (diestrus-1, diestrus-2) or the right side (estrus, diestrus-1) of the POA-AHA. The animals were sacrificed on the expected proestrus or estrus day, and the follicular population was counted and the follicles measured in both ovaries. Atropine implants inserted in the left POA-AHA on diestrus-2 resulted in lower follicular growth and atresia in the ipsilateral ovary (left one). No apparent effects were observed in the right ovary. Atropine implants inserted in the right POA-AHA on estrus day resulted in fewer numbers of small follicles in the ipsilateral ovary (right) and a greater number of pre-ovulatory ones. Present results suggest that acetylcholine, via muscarinic receptors of the POA-AHA, regulates ovarian follicular fate in an asymmetric way, and that its actions fluctuate during the estrous cycle. In addition, each ovary seems to respond differently to the POA-AHA's muscarinic signal surge on estrus and diestrus-2 days.
Collapse
Affiliation(s)
- María Esther Cruz
- Neuroendocrinology Laboratory, Biology of Reproduction Research Unit, Facultad de Estudios Superiores Zaragoza, UNAM, A. P. 9-020, 15000, Mexico, DF, Mexico,
| | | | | |
Collapse
|
7
|
Zemkova H, Kucka M, Bjelobaba I, Tomic M, Stojilkovic SS. Multiple cholinergic signaling pathways in pituitary gonadotrophs. Endocrinology 2013; 154:421-33. [PMID: 23161872 PMCID: PMC3529387 DOI: 10.1210/en.2012-1554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh) has been established as a paracrine factor in the anterior pituitary gland, but the receptors mediating ACh action and the cell types bearing these receptors have not been identified. Our results showed that the expression of the nicotinic subunits mRNAs followed the order β2 > β1 = α9 > α4 in cultured rat pituitary cells. The expression of the subunits in immortalized LβT2 mouse gonadotrophs followed the order β2 > α4 = α1. M4 > M3 muscarinic receptor mRNA were also identified in pituitary and LβT2 cells. The treatment of cultured pituitary cells with GnRH down-regulated the expression of α9 and α4 mRNAs, without affecting the expression of M3 and M4 receptor mRNAs, and ACh did not alter the expression of GnRH receptor mRNA. We also performed double immunostaining to show the expression of β2-subunit and M4 receptor proteins in gonadotrophs. Functional nicotinic channels capable of generating an inward current, facilitation of electrical activity, and Ca(2+) influx were identified in single gonadotrophs and LβT2 cells. In both cell types, the M3 receptor-mediated, phospholipase C-dependent Ca(2+) mobilization activated an outward apamin-sensitive K(+) current and caused hyperpolarization. The activation of M4 receptors by ACh inhibited cAMP production and GnRH-induced LH release in a pertussis toxin-sensitive manner. We concluded that multiple cholinergic receptors are expressed in gonadotrophs and that the main secretory action of ACh is inhibitory through M4 receptor-mediated down-regulation of cAMP production. The expression of nicotinic receptors in vitro compensates for the lack of regular GnRH stimulation of gonadotrophs.
Collapse
Affiliation(s)
- Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Trkulja V, Crljen-Manestar V, Banfic H, Lackovic Z. Involvement of the peripheral cholinergic muscarinic system in the compensatory ovarian hypertrophy in the rat. Exp Biol Med (Maywood) 2004; 229:793-805. [PMID: 15337834 DOI: 10.1177/153537020422900812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present experiments, unilateral ovariectomy (ULO) induced compensatory hypertrophy (COH) of the remaining rat ovary (60%-85% increase in ovarian weight, total proteins, and total RNA and DNA). An increased thymidine uptake preceded the organ enlargement. COH was inhibited by i.p.-administered muscarinic antagonist propantheline (dose-dependently) or botulinum toxin delivered locally to the ovary. The effects were reversed by bethanecol i.p. (a muscarinic agonist). In sham ULO animals, [3H]-scopolamine binding to ovarian membranes indicated the existence of muscarinic receptors (Kd 2.5 nM, Bmax 12 fmol/mg proteins, Hill 1.0). The ovarian 1,2-diacylglycerol (DAG) was 120-150 pmol/mg tissue and did not react to carbachol in vitro (50 microM). At 15 minutes after ULO, the [3H]-scopolamine binding was unchanged (Kd 2.6 nM, Bmax 12.6 fmol/mg tissue, Hill 1.0), but the ovarian DAG was increased (280-350 pmol/mg tissue) and increased further in response to carbachol (460-550 pmol/mg tissue). After ULO, ovarian DAG remained continuously responsive to carbachol. The ULO-induced DAG increase and enhanced susceptibility to carbachol were inhibited by the botulinum toxin or atropine pretreatments. Abdominal vagotomy done immediately before ULO also inhibited the ULO-induced DAG increase and DAG responsiveness to carbachol. However, when the vagotomy was performed 10 mins after ULO, the ovarian DAG remained responsive to carbachol in vitro. The data suggest that the peripheral cholinergic system, including the ovarian muscarinic receptors, stimulates COH. This is apparently associated with the ULO-induced coupling of the ovarian muscarinic receptors to phosphoinositide (PI) breakdown. Vagus plays a role in the occurrence of the changed muscarinic receptor-PI breakdown relationship in the remaining ovary.
Collapse
Affiliation(s)
- Vladimir Trkulja
- Department of Pharmacology, Croatian Brain Research Institute, Zagreb University School of Medicine, Zagreb, Croatia.
| | | | | | | |
Collapse
|
9
|
Kimura F, Shinohara K, Funabashi T, Daikoku S, Suyama K, Mitsushima D, Sano A. Nicotine inhibition of pulsatile GnRH secretion is mediated by GABAA receptor system in the cultured rat embryonic olfactory placode. Psychoneuroendocrinology 2004; 29:749-56. [PMID: 15110924 DOI: 10.1016/s0306-4530(03)00119-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Revised: 04/04/2003] [Accepted: 04/07/2003] [Indexed: 11/30/2022]
Abstract
In past work, we suggested that nicotine inhibition of in vivo pulsatile LH release is not mediated by opiate receptors known to be involved in the inhibition of LH release. In the present study, we examined whether nicotine inhibits the pulsatile gonadotropin-releasing hormone (GnRH) release, and whether this inhibition of GnRH release by nicotine is mediated by the GABA receptor system, by checking in vitro pulsatile GnRH release from cultured GnRH neurons obtained from olfactory placodes of rat embryos at E13.5. The mean interpulse interval of pulsatile GnRH release into the medium was 34.2+/-2.0 min in the control period and increased to 95.3+/-19.0 min (n=6) in the period of nicotine treatment at a concentration of 500 nM, showing an inhibitory effect of nicotine on pulsatile GnRH release. The GABA(A) receptor antagonist bicuculline used alone at a concentration of 20 microM caused no significant changes in the pulsatile GnRH release, but when used in combination with 500 nM of nicotine, bicuculline blocked the nicotine inhibition of GnRH release. In a separate experiment, nicotine treatment at a concentration of 500 nM significantly increased GABA release. These results suggest that, in the cultured embryonic olfactory placode, nicotine stimulates GABA release, which then inhibits GnRH release through GABA(A) receptor system.
Collapse
Affiliation(s)
- Fukuko Kimura
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | |
Collapse
|