1
|
Banik J, Moreira ARS, Lim J, Tomlinson S, Hardy LL, Lagasse A, Haney A, Crimmins MR, Boehm U, Odle AK, MacNicol MC, Childs GV, MacNicol AM. The Musashi RNA binding proteins direct the translational activation of key pituitary mRNAs. Sci Rep 2024; 14:5918. [PMID: 38467682 PMCID: PMC10928108 DOI: 10.1038/s41598-024-56002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.
Collapse
Affiliation(s)
- Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Sophia Tomlinson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Meghan R Crimmins
- Arkansas Children's Nutrition Center, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Abstract
Most of the anticancer chemotherapeutic drugs that are broadly and successfully used today are DNA-damaging agents. Targeting of DNA has been proven to cause relatively potent and selective destruction of tumor cells. However, the clinical potential of DNA-damaging agents is limited by the adverse side effects and increased risk of secondary cancers that are consequences of the agents' genotoxicity. In this review, we present evidence that those agents capable of targeting DNA without inducing DNA damage would not be limited in these ways, and may be as potent as DNA-damaging agents in the killing of tumor cells. We use as an example literature data and our own research of the well-known antimalarial drug quinacrine, which binds to DNA without inducing DNA damage, yet modulates a number of cellular pathways that impact tumor cell survival.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
3
|
Clarke IJ, Tobin VA, Pompolo S, Pereira A. Effects of changing gonadotropin-releasing hormone pulse frequency and estrogen treatment on levels of estradiol receptor-alpha and induction of Fos and phosphorylated cyclic adenosine monophosphate response element binding protein in pituitary gonadotropes: studies in hypothalamo-pituitary disconnected ewes. Endocrinology 2005; 146:1128-37. [PMID: 15564326 DOI: 10.1210/en.2004-0980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-alpha (ER alpha) levels in gonadotropes are increased during the follicular phase of the ovine estrous cycle, a time of increased frequency of pulsatile secretion of GnRH and elevated plasma estrogen levels. In the present study, our first aim was to determine which of these factors causes the rise in the number of gonadotropes with ER alpha. Ovariectomized hypothalamo-pituitary disconnected ewes (n = 4-6) received the following treatments: 1) no treatment, 2) injection (im) of 50 microg estradiol benzoate (EB), 3) pulses (300 ng iv) of GnRH every 3 h, 4) GnRH treatment as in group 3 and EB treatment as in group 2, 5) increased frequency of GnRH pulses commencing 20 h before termination, and 6) GnRH treatment as in group 5 with EB treatment. These treatments had predictable effects on plasma LH levels. The number of gonadotropes in which ER alpha was present (by immunohistochemistry) was increased by either GnRH treatment or EB injection, but combined treatment had the greatest effect. Immunohistochemistry was also performed to detect phosphorylated cAMP response element binding protein (pCREB) and Fos protein in gonadotropes. The number of gonadotropes with Fos and with pCREB was increased only in group 6. We conclude that either estrogen or GnRH can up-regulate ER alpha in pituitary gonadotropes. On the other hand, during the period of positive feedback action of estrogen, the appearance of pCREB and Fos in gonadotropes requires the combined action of estrogen and increased frequency of GnRH input. This suggests convergence of signaling for GnRH and estrogen.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
4
|
Petr MJ, Origitano TC, Wurster RD. PLA2 activity regulates Ca2+ storage-dependent cellular proliferation. Exp Cell Res 1998; 244:310-8. [PMID: 9770374 DOI: 10.1006/excr.1998.4181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study is to determine the role of arachidonic acid (AA) in cell proliferation by inhibiting AA synthetic enzyme phospholipase A2 (PLA2) and to determine its involvement in the role of the second messenger intracellular calcium (Ca2+). Methods used to determine the effects on proliferation of cell cultures of primary meningioma and astrocytoma U373-MG included treatment with micromolar concentrations of PLA2 inhibitors 4-bromophenacylbromide and quinacrine. Effects of these drugs on proliferation were further investigated by the application of concentrations that inhibit growth by 50% while antagonizing these agents with AA replacement. Free cytosolic Ca2+ was measured with the use of fluorescent dye Fura-2 during PLA2 agonist/antagonist studies. These Ca2+ measurements were performed in the absence of extracellular Ca2+ to identify the contribution of intracellular Ca2+ sources. PLA2 inhibition resulted in decreased growth of cultured astrocytoma and meningioma cells in a dose-dependent manner in the micromolar range. This inhibitory effect was antagonized by the addition of AA. PLA2 inhibition caused an elevation of basal-cytosolic-free [Ca2+] while depleting internal Ca2+ stores. These Ca2+ changes were also antagonized by the addition of AA. In conclusion, these results demonstrate that AA, a PLA2 enzyme product, is involved in regulating the growth rate of these cell types. The PLA2 pathway also regulates the maintenance of the internal Ca2+ stores. Ca2+ is known to be a growth-related intracellular second messenger. These results suggest that the growth regulatory functions of AA are mediated by Ca2+-dependent mechanisms.
Collapse
Affiliation(s)
- M J Petr
- Loyola University Medical Center, Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | | | | |
Collapse
|