1
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Cool DR, Jackson SB, Waddell KS. Structural Requirements for Sorting Pro-Vasopressin to the Regulated Secretory Pathway in a Neuronal Cell Line. OPEN NEUROENDOCRINOLOGY JOURNAL (ONLINE) 2008; 1:1-8. [PMID: 19830265 PMCID: PMC2760848 DOI: 10.2174/1876528900801010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin is a peptide hormone normally secreted via the regulated secretory pathway in neuro-endocrine cells. In an effort to determine which region of vasopressin contains sufficient information for sorting, we created five constructs with the cDNA for vasopressin or regions of vasopressin in frame with the gene for green fluorescent protein (GFP). Fluorescence microscopy of Neuro-2a cells expressing the constructs revealed full-length vasopressin-GFP (VP-GFP), neurophysin-GFP (NP-GFP) and arginine-vasopressin/neurophysin-GFP (AN-GFP), were localized to punctate granules in the neurites and accumulated at the tips of neurites, characteristic of regulated secretory granules. These fusion proteins were secreted in a regulated manner as determined by pulse-chase labeling experiments. Two other chimeric proteins, signalpeptide-GFP and AVP-GFP were localized to a perinuclear region, characteristic of the endoplasmic reticulum. Pulse/chase [(35)S]labeling followed by immunoprecipitation using anti-GFP antibody indicated that these two fusion proteins were constitutively secreted. We conclude that the neurophysin region of pro-vasopressin contains information that is both sufficient and necessary for sorting GFP into the regulated secretory pathway.
Collapse
Affiliation(s)
- David R. Cool
- Boonshoft School of Medicine, Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Steven B. Jackson
- Boonshoft School of Medicine, Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Karen S. Waddell
- Boonshoft School of Medicine, Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| |
Collapse
|
3
|
Ghorbel MT, Coulson JM, Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol Cell Neurosci 2003; 22:396-404. [PMID: 12691740 DOI: 10.1016/s1044-7431(02)00019-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The vasopressin gene is expressed in the suprachiasmatic nucleus where the basic helix-loop-helix (bHLH)-PAS factors CLOCK and MOP3 regulate circadian expression through interactions with E-box sequences. We have examined vasopressin gene regulation by HIF-1alpha, a bHLH-PAS factor involved in responses to hypoxia. By transfecting Neuro-2A cells with 5' flanking regions of vasopressin gene driving a luciferase reporter, we have shown that CLOCK and HIF-1alpha cooperate in the induction of expression from 1000 bp and 350 bp of the vasopressin promoter but do not activate a 120-bp promoter fragment. The region between -191 and -128 contains an E-box A that appears to be essential for HIF-1alpha/CLOCK-mediated transcriptional activity. However, gel-shift analysis shows that the cooperative effect of HIF-1alpha and CLOCK results in MOP3 binding, but does not involve heterodimerization of HIF-1alpha/CLOCK, at E-box A. These data indicate that cross-talk between mediators of hypoxic and circadian pathways can regulate target genes.
Collapse
Affiliation(s)
- Mohamed T Ghorbel
- Molecular Neuroendocrinology Research Group, University Research Center for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, UK.
| | | | | |
Collapse
|
4
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
5
|
Hanai T, Inamaoto Y, Inamoto S. Chromatography of guanidino compounds. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 747:123-38. [PMID: 11103903 DOI: 10.1016/s0378-4347(00)00340-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Guanidino compounds involved in the urea and guanidine cycles have been found in serum of nephritic patients, and some guanidino compounds have been suspected to be uremic toxins. The simultaneous analysis of naturally occurring metabolites is important for diagnosis of diseases. In this review, liquid chromatographic analysis of natural metabolites of guanidino compounds are described. the information about arginine as a precursor of nitric oxide are included. The reports of pharmaceutical compounds having a guanidino group, peptides containing arginine and aminoglycosides are summarized in Table 1.
Collapse
Affiliation(s)
- T Hanai
- Health Research Foundation, Institut Pasteur 5F, Kyoto, Japan.
| | | | | |
Collapse
|
6
|
Cawley NX, Normant E, Chen A, Loh YP. Oligomerization of pro-opiomelanocortin is independent of pH, calcium and the sorting signal for the regulated secretory pathway. FEBS Lett 2000; 481:37-41. [PMID: 10984611 DOI: 10.1016/s0014-5793(00)01961-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies indicate that pro-opiomelanocortin (POMC) is sorted to the regulated secretory pathway by binding to a sorting receptor identified as membrane-bound carboxypeptidase E (CPE) [Cool et al. (1997) Cell 88, 73-83]. The efficiency of this sorting mechanism could be enhanced if POMC molecules were to self-associate to form oligomers, prior or subsequent to binding to CPE. Using cross-linking and gel filtration techniques, we demonstrated that POMC forms oligomers at both neutral and acidic pHs and calcium was not necessary. delta N-POMC, which lacks the N-terminal sorting signal for the regulated secretory pathway, also formed similar oligomers, indicating that the sorting and oligomerization domains are different.
Collapse
Affiliation(s)
- N X Cawley
- Section on Cellular Neurobiology, Laboratory of Developmental Neurobiology, Bldg. 49/Rm 5A38, National Institute for Child and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
7
|
Mak NK, Li WK, Zhang M, Wong RN, Tai LS, Yung KK, Leung HW. Effects of euxanthone on neuronal differentiation. Life Sci 2000; 66:347-54. [PMID: 10665986 DOI: 10.1016/s0024-3205(99)00596-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The growth inhibitory and differentiation inducing effects of euxanthone (1,7-dihydroxyxanthone) from the medicinal plant Polygala caudata on the neuroblastoma (Neural 2A, subclone BU-1) were investigated. At the concentration range of 0-100 microM, euxanthone inhibits the growth of BU-1 cells in a dose dependent manner. The 50% growth inhibitory concentration (IC50) was 41 microM. Significant induction of morphological differentiation and neurite growth was observed at the concentration of 100 microM. Frequency of proliferative neuroblastoma cells was determined after induction of differentiation. The frequency of proliferating BU-1 cells was markedly reduced from 1/1.1 to <1/99. Confocal microscopy also confirmed that the morphological differentiation of BU-1 was associated with the expression of neurite specific marker MAP-2 protein in neurites. These data suggest that euxanthone may be one of the neuropharmacological active compounds in the medicinal plant Polygala caudata.
Collapse
Affiliation(s)
- N K Mak
- Department of Biology, Hong Kong Baptist University, Kowloon Tong
| | | | | | | | | | | | | |
Collapse
|
8
|
Gainer H. Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:15-27. [PMID: 10026782 DOI: 10.1007/978-1-4615-4871-3_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxytocin (OT) and vasopressin (VP) expressing magnocellular neurons in the hypothalamic-neurohypophysial system (HNS) have been the most studied of all the neuroendocrine cell-types. Despite this, our understanding of the mechanisms that underly the cell-specific expression of the peptide genes in these neurons has remained obscure. Part of the reason for this may be related to the close apposition of the OT and VP genes in the chromosomal locus, the genes being separated by as little as 3.5 kb in the mouse, and their interactions which are critical for cell-specific expression of the genes. Recent studies using intact rat OT and VP constructs in transgenic mice, and rat and mouse VP genes with CAT inserts in exon III as reporters in transgenic rats and mice, respectively, have suggested the presence of cell-specific enhancer elements in the 3' downstream (intergenic region, IGR) region of the VP gene. Evidence in favor of this view is presented from transgenic mouse studies on the expression of mouse OT- and VP-CAT gene constructs. Oxytocin and vasopressin phenotypes in the magnocellular neuronal population have traditionally been assessed by either immunocytochemical or in situ hybridization histochemical methods leading to the view that these genes are never coexpressed. However, more sensitive methods show that most OT cells also express some VP mRNA, and most VP cells contain some OT mRNA. A third phenotype containing equivalent levels of both OT and VP mRNA can also be found under some conditions, thereby complicating our analysis of cell-specificity. A continuing problem hindering studies of the regulation of OT and VP gene expression in neurons, is the absence of an appropriate cell line to examine these issues. We have found that stationary slice-explant cultures allow for excellent preservation of highly differentiated magnocellular neurons in long-term culture, and that these cultures can be used for physiological and pharmacological studies and analysis of gene expression.
Collapse
Affiliation(s)
- H Gainer
- Laboratory of Neurochemistry, National Institutes of Health, NINDS, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Chu K, Boutin JM, Breton C, Zingg HH. Nuclear orphan receptors COUP-TFII and Ear-2: presence in oxytocin-producing uterine cells and functional interaction with the oxytocin gene promoter. Mol Cell Endocrinol 1998; 137:145-54. [PMID: 9605516 DOI: 10.1016/s0303-7207(97)00241-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that the oxytocin (OT) gene is expressed in the rat uterine epithelium and that its expression is upregulated in vivo and in vitro by estrogen. This hormonal regulation is mediated by a hormone response element (HRE) located in the OT gene promoter. Here we show that the same OT-HRE is also capable of interacting with two novel members of the orphan nuclear receptor family, rat COUP-TFII and Ear-2, and that this interaction antagonizes the estrogenic induction of the OT promoter. By Northern blot analysis and immunocytochemistry, using specific cDNA probes and antibodies, respectively, we demonstrate furthermore that both orphan receptors are expressed in uterine epithelial cells. Therefore, the present findings indicate that uterine OT gene expression is under stimulatory as well as inhibitory influences which are both mediated by the same HRE. More detailed analysis of the sequences necessary for estrogen receptor action and for orphan receptor action, using site-directed mutagenesis, revealed that the specific recognition sequences are overlapping but distinct: whereas the (imperfect) palindromic structure of the HRE constitutes the estrogen response element (ERE), orphan receptor action relies on an underlying direct TGACC repeat which forms part of the OT-HRE structure and overlaps with the estrogen response element.
Collapse
Affiliation(s)
- K Chu
- Laboratory of Molecular Endocrinology, Royal Victoria Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|