1
|
In vivo subchronic effects of ciguatoxin-related compounds, reevaluation of their toxicity. Arch Toxicol 2022; 96:2621-2638. [PMID: 35657391 PMCID: PMC9325831 DOI: 10.1007/s00204-022-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.
Collapse
|
2
|
Gill S, Veinot J, Kavanagh M, Pulido O. Human Heart Glutamate Receptors—Implications for Toxicology, Food Safety, and Drug Discovery. Toxicol Pathol 2016; 35:411-7. [PMID: 17455090 DOI: 10.1080/01926230701230361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Excitatory amino acids (EAAs) mediate their effects through the glutamate receptors (GluRs) in the brain. GluRs play an important role in the treatment of a variety of neuropsychiatric conditions and are central to the neurotoxicity of EAAs such as domoic and kainic acid. Unstained histological preparations of human heart tissues were used for the histopathological assessment, the anatomical identification of specific cardiac structures and the presence of the GluRs. Immunohistochemical stains with the biomarkers protein gene product (PGP 9.5) and the neurofilaments (NF 160 and NF 200) were used to identify neural structures and the components of the conducting system. Several subtypes of GluRs were differentially expressed and each had a specific distribution. In contrast to nonhuman primates, GluRs are more widely expressed in humans, where the working myocardium and the wall of blood vessels stained for GluRs. The immunolabelling was observed within the specialized structures of the conducting system, intramural nerves, and ganglia cells. These receptors may be involved in important cardiac functions such as contraction, rhythm, coronary circulation, and thus may be implicated in the pathobiology of some cardiac disease. The GluRs in the heart could be targets for the effects of excitatory compounds and is therefore an important consideration for the safety evaluation of foods and therapeutic products.
Collapse
Affiliation(s)
- Santokh Gill
- Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, K1A-OL2, P.L. 2202D2, Canada
| | | | | | | |
Collapse
|
3
|
Kibet LC, Bryant RB, Buda AR, Kleinman PJA, Saporito LS, Allen AL, Hashem FM, May EB. Persistence and Surface Transport of Urea-Nitrogen: A Rainfall Simulation Study. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1062-1070. [PMID: 27136175 DOI: 10.2134/jeq2015.09.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ~1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses.
Collapse
|
4
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
5
|
Martin V, Vale C, Antelo A, Hirama M, Yamashita S, Vieytes MR, Botana LM. Differential Effects of Ciguatoxin and Maitotoxin in Primary Cultures of Cortical Neurons. Chem Res Toxicol 2014; 27:1387-400. [DOI: 10.1021/tx5000969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Masahiro Hirama
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shuji Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | |
Collapse
|
6
|
Arvanitoyannis IS, Kotsanopoulos KV, Papadopoulou A. Rapid Detection of Chemical Hazards (Toxins, Dioxins, and PCBs) in Seafood. Crit Rev Food Sci Nutr 2014; 54:1473-528. [DOI: 10.1080/10408398.2011.641132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Yamaoka K, Inoue M, Hirama M. A study on mechanisms of toxic actions of ciguatoxins: existence of functional relationship between CTX3C and charged residues of voltage sensors in Nav1.4 sodium channel. Forensic Toxicol 2011. [DOI: 10.1007/s11419-011-0113-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Tao J, Wei W, Nan L, Lei L, Hui H, Fen G, Jun L, Jing Z, Rong J. Development of competitive indirect ELISA for the detection of tetrodotoxin and a survey of the distribution of tetrodotoxin in the tissues of wild puffer fish in the waters of south-east China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:1589-97. [DOI: 10.1080/19440049.2010.504237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Ellis R, Jelinek GA. Never eat an ugly fish: three cases of tetrodotoxin poisoning from Western Australia. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1442-2026.1997.tb00369.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Swanson GT, Sakai R. Ligands for ionotropic glutamate receptors. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:123-57. [PMID: 19184587 PMCID: PMC2901239 DOI: 10.1007/978-3-540-87895-7_5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Amino Acids/physiology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Kainic Acid/metabolism
- Kainic Acid/pharmacology
- Ligands
- Mammals
- Mollusk Venoms/pharmacology
- Mollusk Venoms/toxicity
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid, delta/physiology
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Geoffrey T Swanson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | |
Collapse
|
11
|
Watters MR. NEUROLOGIC MARINE BIOTOXINS. Continuum (Minneap Minn) 2008. [DOI: 10.1212/01.con.0000337995.78044.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
|
13
|
Wang DZ. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 2008; 6:349-71. [PMID: 18728731 PMCID: PMC2525493 DOI: 10.3390/md20080016] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/19/2022] Open
Abstract
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Lab of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, P.R. China.
| |
Collapse
|
14
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
15
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
16
|
Fleming LE, Broad K, Clement A, Dewailly E, Elmir S, Knap A, Pomponi SA, Smith S, Solo Gabriele H, Walsh P. Oceans and human health: Emerging public health risks in the marine environment. MARINE POLLUTION BULLETIN 2006; 53:545-60. [PMID: 16996542 PMCID: PMC2573863 DOI: 10.1016/j.marpolbul.2006.08.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There has been an increasing recognition of the inter-relationship between human health and the oceans. Traditionally, the focus of research and concern has been on the impact of human activities on the oceans, particularly through anthropogenic pollution and the exploitation of marine resources. More recently, there has been recognition of the potential direct impact of the oceans on human health, both detrimental and beneficial. Areas identified include: global change, harmful algal blooms (HABs), microbial and chemical contamination of marine waters and seafood, and marine models and natural products from the seas. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans.
Collapse
Affiliation(s)
- L E Fleming
- National Science Foundation (NSF), National Institute of Environmental Health Sciences (NIEHS), Oceans and Human Health Center, University of Miami, Miami, FL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neagu D, Micheli L, Palleschi G. Study of a toxin-alkaline phosphatase conjugate for the development of an immunosensor for tetrodotoxin determination. Anal Bioanal Chem 2006; 385:1068-74. [PMID: 16783470 DOI: 10.1007/s00216-006-0522-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/21/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
This paper describes a direct competitive immunoenzymatic spectrophotometric assay (ELISA) for tetrodotoxin (TTX) determination and the adaptation of this method for use in an electrochemical assay format. The novelty of this work involves the use of the antigen labelled with alkaline phosphatase (AP); this conjugate was prepared in our laboratory as there is no commercially available conjugate of any kind for TTX. The new conjugate was characterized in terms of its affinity for the specific antibody as well as the residual concentration and the residual activity of the enzyme (AP) incorporated as label. The proposed method based on the new conjugate showed satisfactory results for TTX determination: for the spectrophotometric method the dynamic range was 4-15 ng mL(-1) with a limit of detection (LOD) of 2 ng mL(-1) (R=0.9247), whereas for the electrochemical protocol the dynamic range was 2-50 ng mL(-1) and the LOD was 1 ng mL(-1).
Collapse
Affiliation(s)
- D Neagu
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | |
Collapse
|
18
|
Yamaoka K, Inoue M, Miyahara H, Miyazaki K, Hirama M. A quantitative and comparative study of the effects of a synthetic ciguatoxin CTX3C on the kinetic properties of voltage-dependent sodium channels. Br J Pharmacol 2004; 142:879-89. [PMID: 15197105 PMCID: PMC1575065 DOI: 10.1038/sj.bjp.0705852] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ciguatoxins (CTXs) are known to bind to receptor site 5 of the voltage-dependent Na channel, but the toxin's physiological effects are poorly understood. In this study, we investigated the effects of a ciguatoxin congener (CTX3C) on three different Na-channel isoforms, rNa(v)1.2, rNa(v)1.4, and rNa(v)1.5, which were transiently expressed in HEK293 cells. The toxin (1.0 micromol l(-1)) shifted the activation potential (V(1/2) of activation curve) in the negative direction by 4-9 mV and increased the slope factor (k) from 8 mV to between 9 and 12 mV (indicative of decreased steepness of the activation curve), thereby resulting in a hyperpolarizing shift of the threshold potential by 30 mV for all Na channel isoforms. The toxin (1.0 micromol l(-1)) significantly accelerated the time-to-peak current from 0.62 to 0.52 ms in isoform rNa(v)1.2. Higher doses of the toxin (3-10 micromol l(-1)) additionally decreased time-to-peak current in rNa(v)1.4 and rNa(v)1.5. A toxin effect on decay of I(Na) at -20 mV was either absent or marginal even at relatively high doses of CTX3C. The toxin (1 micromol l(-1)) shifted the inactivation potential (V(1/2) of inactivation curve) in the negative direction by 15-18 mV in all isoforms. I(Na) maxima of the I-V curve (at -20 mV) were suppressed by application of 1.0 micromol l(-1) CTX3C to a similar extent (80-85% of the control) in all the three isoforms. Higher doses of CTX3C up to 10 micromol l(-1) further suppressed I(Na) to 61-72% of the control. Recovery from slow inactivation induced by a depolarizing prepulse of intermediate duration (500 ms) was dramatically delayed in the presence of 1.0 micromol l(-1) CTX3C, as time constants describing the monoexponential recovery were increased from 38+/-8 to 588+/-151 ms (n=5), 53+/-6 to 338+/-85 ms (n=4), and 23+/-3 to 232+/-117 ms (n=3) in rNa(v)1.2, rNa(v)1.4, and rNa(v)1.5, respectively. CTX3C exerted multimodal effects on sodium channels, with simultaneous stimulatory and inhibitory aspects, probably due to the large molecular size (3 nm in length) and lipophilicity of this membrane-spanning toxin.
Collapse
Affiliation(s)
- Kaoru Yamaoka
- Department of Physiology, School of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|
19
|
Watters MR, Stommel EW. Marine Neurotoxins: Envenomations and Contact Toxins. Curr Treat Options Neurol 2004; 6:115-123. [PMID: 14759344 DOI: 10.1007/s11940-004-0021-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Familiarity with the appearance and habitat of venomous sea creatures, the location of their stinging apparatus, and surveillance of population concentrations within recreational waters are essential in avoiding envenomations. Compared with the thermo-stable low molecular weighted ingestible seafood toxins, venomous toxins are often large molecular weight proteins and many are heat labile, which provides opportunity for therapeutic intervention. Heat therapy may denature the toxins, and provide immediate relief of pain in coelenterate and venomous fish envenomations. Injections of local anesthetic agents may also be used. First aid measures at the seashore may limit the spread of venom, and include immobilization of the affected sites, compression bandaging, and venous-lymphatic occlusive bandages. Measures to limit continued envenomation by attached stinging cells include topical vinegar for jellyfish tentacles and irrigation with debridment for spines of venomous fish. Antivenins are of limited availability and may be used for envenomations with sea snakes, Chironex box jellyfish, and some venomous fish. Sea snakes bites may be treated with antivenin from land snakes or with hemodialysis when antivenin is not available. Neuromuscular paralysis occurs with bites by sea snakes, cone snails, blue octopuses, and some jellyfish. Supportive treatment includes attention to cardiopulmonary resuscitation and intubation. Exposure to Pfeisteria may result in cognitive and behavioral abnormalities. Treatment with cholestyramine may be helpful in binding the toxin and improve recovery.
Collapse
Affiliation(s)
- Michael R. Watters
- Department of Medicine, Division of Neurology, University of Hawaii, 1356 Lusitana Street, 7th Floor, Honolulu, HI 96813, USA.
| | | |
Collapse
|
20
|
Abstract
Fish and shellfish account for a significant portion of food-borne illnesses throughout the world. In general, three classes of diseases result from seafood consumption--intoxication, allergies, and infections. In this review, the authors discuss several seafood-borne toxins, including domoic acid, which acts on the central nervous system. In addition, the authors discuss ciguatoxin-, brevetoxin-, saxitoxin-, tetrodotoxin-, and scombroid-related histamine toxicity, all of which act primarily on the peripheral nervous system. Fish has become a very popular food in the US mostly related to its potential health benefits. Fish is consumed to such a degree that fishing stocks are reportedly at an all time low from what seemed like an endless supply even 30 years ago. One of the most significant threats to human intoxication is the recreational harvest of shellfish, often times located in remote locations where the harvesters are subsistent on fishery resources and have no monitoring in place. The hazard to intoxication is not as common in purchased seafood, which is more stringently regulated, yet still is a serious problem. Most ingestible toxins are thermo-stable and therefore unaffected by cooking, freezing, or salting. Air transport of consumable products throughout the world makes it easy to obtain exotic edibles from far away countries. A seemingly unusual toxin can be more commonly encountered than previously thought and it is important to consider this when evaluating patients. Recognition and treatment of various neurologic symptoms related to seafood ingestion is paramount in today's mobile, gastronomic world. Specific treatments vary with each individual toxin and with the individual's specific reaction to the toxin. Generally, some degree of medical care is required with all ingestible toxin exposure, ranging from simple administration of medication and hydration to ventilatory and cardiovascular support.
Collapse
Affiliation(s)
- Elijah W. Stommel
- Section of Neurology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | |
Collapse
|
21
|
White SM. Chemical and biological weapons. Implications for anaesthesia and intensive care. Br J Anaesth 2002; 89:306-24. [PMID: 12378672 DOI: 10.1093/bja/aef168] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the wake of recent atrocities there has been renewed apprehension regarding the possibility of chemical and biological weapon (CBW) deployment by terrorists. Despite various international agreements that proscribe their use, certain states continue to develop chemical and biological weapons of mass destruction. Of greater concern, recent historical examples support the prospect that state-independent organizations have the capability to produce such weapons. Indeed, the deliberate deployment of anthrax has claimed several lives in the USA since September 11, 2001. In the event of a significant CBW attack, medical services would be stretched. However, victim survival may be improved by the prompt, coordinated response of military and civil authorities, in conjunction with appropriate medical care. In comparison with most other specialties, anaesthetists have the professional academic background in physiology and pharmacology to be able to understand the nature of the injuries caused by CBWs. Anaesthetists, therefore, play a vital role both in the initial resuscitation of casualties and in their continued treatment in an intensive care setting. This article assesses the current risk of CBW deployment by terrorists, considers factors which would affect the severity of an attack, and discusses the pathophysiology of those CBWs most likely to be used. The specific roles of the anaesthetist and intensivist in treatment are highlighted.
Collapse
Affiliation(s)
- S M White
- Department of Anaesthesia, Guy's and St Thomas' Hospital Trust, St Thomas' Street, London SE1 9RT, UK
| |
Collapse
|
22
|
Gill SS, Pulido OM. Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 2001; 29:208-23. [PMID: 11421488 DOI: 10.1080/019262301317052486] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We illustrate the specific cellular distribution of different subtypes of glutamate receptors (GluRs) in peripheral neural and non-neural tissues. Some of the noteworthy locations are the heart, kidney, lungs, ovary, testis and endocrine cells. In these tissues the GluRs may be important in mediating cardiorespiratory, endocrine and reproductive functions which include hormone regulation, heart rhythm, blood pressure, circulation and reproduction. Since excitotoxicity of excitatory amino acids (EAAs) in the CNS is intimately associated with the GluRs, the toxic effects may be more generalized than initially assumed. Currently there is not enough evidence to suggest the reassessment of the regulated safety levels for these products in food since little is known on how these receptors work in each of these organs. More research is required to assess the extent that these receptors participate in normal functions and/or in the development of diseases and how they mediate the toxic effects of EAAs. Non-neural GluRs may be involved in normal cellular functions such as excitability and cell to cell communication. This is supported by the wide distribution in plants and animals from invertebrates to primates. The important tasks for the future will be to clarify the multiple biological roles of the GluRs in neural and non-neural tissues and identify the conditions under in which these are up- or down-regulated. Then this could provide new therapeutic strategies to target GluRs outside the CNS.
Collapse
|
23
|
Silbergeld EK, Grattan L, Oldach D, Morris JG. Pfiesteria: harmful algal blooms as indicators of human: ecosystem interactions. ENVIRONMENTAL RESEARCH 2000; 82:97-105. [PMID: 10662524 DOI: 10.1006/enrs.1999.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- E K Silbergeld
- Program in Human Health and the Environment, University of Maryland, 10 South Pine Street, MSTF 9-34, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|