Abstract
Murine Meissner corpuscles (mouse digital corpuscles), located in pad skin at the toe tip, consist of lamellar cells with long cellular processes (lamellae) surrounding axon terminals in an onion-skin fashion. Lamellar cell bodies and processes were provided with a basal lamina. The present study was made to examine whether these lamellar cell basal laminae have any specific role in the differentiation of regenerating axons and Schwann cells into specialized axon terminals and lamellar cells, respectively. Pad skin at the toe tip was treated 3-5 X by freezing and thawing. By this treatment, cellular constituents of the corpuscles die and disintegrate into cell debris, leaving in situ basal laminae of the lamellar cells in stacked hollow loops, reminiscent of the original configuration of lamellae. Schwann cells and axons of the ordinary nerve fibers in the pad skin were similarly damaged, and basal laminae of the Schwann cells remained as basal lamina tubes. Three days after treatment, regenerating axons were seen extending through the basal lamina tubes of Schwann cells deep in the toe pad skin. However, no regenerating axons were found in the vicinity of the old corpuscles. Five days after treatment, regenerating axons, some of which were accompanied by migrating Schwann cells and others which were still naked, were noted at the subepidermal region, and began to enter the hollow basal lamina loops of the old corpuscles. Eight-15 days after treatment, regenerating axons which entered the basal lamina loops successively gave rise to branches, and at the same time, accompanying Schwann cells emanated cellular processes through well-preserved basal lamina loops. Fifteen-25 days after treatment, regenerating axons seemed to be morphologically specialized as axon terminals, and accompanying Schwann cells differentiated into definite lamellar cells which surrounded the axon terminals in the same manner as in the normal murine Meissner corpuscles. Although the incidence of good regeneration of the corpuscle was relatively low, these findings suggested that basal laminae of lamellar cells might have some specific properties which could be responsible for the differentiation as well as maintenance of lamellar cells and axon terminals in the Meissner corpuscles.
Collapse