1
|
Velezmoro Jauregui G, Vukić D, Onyango IG, Arias C, Novotný JS, Texlová K, Wang S, Kovačovicova KL, Polakova N, Zelinkova J, Čarna M, Lacovich V, Head BP, Havas D, Mistrik M, Zorec R, Verkhratsky A, Keegan L, O'Connell MA, Rissman R, Stokin GB. Amyloid precursor protein induces reactive astrogliosis. Acta Physiol (Oxf) 2024; 240:e14142. [PMID: 38584589 DOI: 10.1111/apha.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
AIM Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.
Collapse
Affiliation(s)
- Gretsen Velezmoro Jauregui
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomedical Research, Masaryk University, Brno, Czech Republic
| | - Isaac G Onyango
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Carlos Arias
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jan S Novotný
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, La Jolla, California, USA
| | | | - Natalie Polakova
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Zelinkova
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
| | - Maria Čarna
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
| | - Valentina Lacovich
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, La Jolla, California, USA
| | | | - Martin Mistrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Zorec
- Laboratory of Neuroendocrinology, Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Technology Park, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Liam Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Gloucestershire Royal Hospital, Gloucestershire NHS Foundation Trust, Gloucester, UK
| |
Collapse
|
2
|
Jauregui GV, Vukić D, Onyango IG, Arias C, Novotný JS, Texlová K, Wang S, Kovačovicova KL, Polakova N, Zelinkova J, Čarna M, Strašil VL, Head BP, Havas D, Mistrik M, Zorec R, Verkhratsky A, Keegan L, O'Connel M, Rissman R, Stokin GB. Amyloid precursor protein induces reactive astrogliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571817. [PMID: 38187544 PMCID: PMC10769227 DOI: 10.1101/2023.12.18.571817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.
Collapse
Affiliation(s)
- Gretsen Velezmoro Jauregui
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomedical Research, Faculty of Science, Masaryk University, Brno Czech Republic
| | - Isaac G Onyango
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Carlos Arias
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jan S Novotný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Natalie Polakova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Zelinkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Maria Čarna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Technology Park, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for innovative Medicine, Vilnius, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Liam Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mary O'Connel
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Gloucestershire Royal Hospital, Gloucestershire NHS Foundation Trust, Gloucester, UK
| |
Collapse
|
3
|
Kurata H, Saito K, Kawashima F, Ikenari T, Oguri M, Saito Y, Maegaki Y, Mori T. Developing a mouse model of acute encephalopathy using low-dose lipopolysaccharide injection and hyperthermia treatment. Exp Biol Med (Maywood) 2019; 244:743-751. [PMID: 31046452 DOI: 10.1177/1535370219846497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT Acute encephalopathy (AE), mainly reported in East Asia, is classified into four categories based on clinical and neuropathological findings. Among them, AE caused by cytokine storm is known as the severest clinical entity that causes cerebral edema with poor prognosis. Because suitable and convenient model animal of AE had not been developed, the treatment of patients with AE is not established. In the present study, we established a simple and convenient protocol to mimic AE due to cytokine storm. Our model animal should be useful to elucidate the pathogenesis of AE.
Collapse
Affiliation(s)
- Hirofumi Kurata
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.,2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan.,3 Department of Pediatrics, National Hospital Organization, Kumamoto Saishunso National Hospital, Koshi, 861-1196, Japan
| | - Kengo Saito
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Fumiaki Kawashima
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Takuya Ikenari
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Masayoshi Oguri
- 4 Department of Pathobiological Science and Technology, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshiaki Saito
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Maegaki
- 2 Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago 683-8504, Japan
| | - Tetsuji Mori
- 1 Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
4
|
Cui M, Ge H, Zeng H, Yan H, Zhang L, Feng H, Chen Y. Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation and Differentiation after Intracerebral Hemorrhage in Mice. Cell Transplant 2019; 28:568-584. [PMID: 30832493 PMCID: PMC7103604 DOI: 10.1177/0963689719834870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a physical treatment applied
during recovery after intracerebral hemorrhage (ICH). With in vivo and in vitro assays,
the present study sought to investigate how rTMS influences neural stem cells (NSCs) after
ICH and the possible mechanism. Following a collagenase-induced ICH, adult male C57BL/6 J
mice were subjected to rTMS treatment every 24 h for 5 days using the following
parameters: frequency, 10 Hz; duration, 2 s; wait time, 5.5 s; 960 trains (500 µV/div, 5
ms/div, default setting). Brain water content and neurobehavioral score were assessed at
days 1, 3, and 5 after ICH. The proliferation and differentiation of NSCs were observed
using immunofluorescence staining for Nestin, Ki-67, DCX, and GFAP on day 3 after ICH, and
rTMS treatment with the same parameters was applied to NSCs in vitro. We found that rTMS
significantly reduced brain edema and alleviated neural functional deficits. The mice that
underwent ICH recovered faster after rTMS treatment, with apparent proliferation and
neuronal differentiation of NSCs and attenuation of glial differentiation and GFAP
aggregation. Accordingly, proliferation and neuronal differentiation of isolated NSCs were
promoted, while glial differentiation was reduced. In addition, microarray analysis,
western blotting assays, and calcium imaging were applied to initially investigate the
potential mechanism. Bioinformatics showed that the positive effect of rTMS on NSCs after
ICH was largely related to the MAPK signaling pathway, which might be a potential hub
signaling pathway under the complex effect exerted by rTMS. The results of the microarray
data analysis also revealed that Ca2+ might be the connection between physical
treatment and the MAPK signaling pathway. These predictions were further identified by
western blotting analysis and calcium imaging. Taken together, our findings showed that
rTMS after ICH exhibited a restorative effect by enhancing the proliferation and neuronal
differentiation of NSCs, potentially through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengchu Cui
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Hongfei Ge
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Han Zeng
- 2 College of Computer and Information Science, Southwest University, Chongqing, P. R. China
| | - Hongxiang Yan
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Le Zhang
- 3 College of Computer Science, Sichuan University, Chengdu, P. R. China
| | - Hua Feng
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yujie Chen
- 1 Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
5
|
Baumgarten P, Quick-Weller J, Gessler F, Wagner M, Tichy J, Forster MT, Foerch C, Seifert V, Mittelbronn M, Senft C. Pre- and early postoperative GFAP serum levels in glioma and brain metastases. J Neurooncol 2018; 139:541-546. [PMID: 29797180 DOI: 10.1007/s11060-018-2898-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 05/13/2018] [Indexed: 11/25/2022]
Abstract
SUBJECT To date there is no established tumor marker for the clinical follow-up of glioblastoma, WHO grade IV, (GBM) which constitutes the most frequent and malignant primary brain tumor. However, since there is promising data that the serum glial fibrillary acidic protein (sGFAP) may serve as a biomarker for glial brain tumors, this prospective study aimed at evaluating the diagnostic relevance of perioperative changes in sGFAP levels for the assessment of residual glial tumor tissue in patients undergoing surgery of intracerebral tumors. METHODS Serum GFAP was measured using an electrochemiluminometric immunoassay (ElecsysR GFAP prototype test, Roche Diagnostics, Penzberg/Germany) in 32 prospectively recruited patients between September 2009 and August 2010. Twenty-five were diagnosed with glioma and seven with brain metastases (BM). We assessed sGFAP levels prior to and at different time points during the early postoperative phase until patient discharge. RESULTS There were only significant differences in the pre-operative sGFAP levels of patients with gliomas compared to BM (0.18 vs. 0.08 µg/l; p = 0.0198, Welch's t-Test). Even though there was an increase of sGFAP after surgery, there were no significant differences between glioma and BM patients at any other time point. Peak sGFAP levels where reached on postoperative day 1 followed by a slight decrease, but not reaching pre-operative levels until postop day 7. There was no significant correlation between postoperative glioma tumor volume and sGFAP levels in univariate analyses. CONCLUSION According to our data sGFAP does not appear to be suitable to detect residual glioma tissue in the acute postoperative phase.
Collapse
Affiliation(s)
- Peter Baumgarten
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.
| | - Johanna Quick-Weller
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Florian Gessler
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Tichy
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie-Therese Forster
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Christian Senft
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Aronowski J, Hall CE. New Horizons for Primary Intracerebral Hemorrhage Treatment: Experience From Preclinical Studies. Neurol Res 2013; 27:268-79. [PMID: 15845210 DOI: 10.1179/016164105x25225] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intracerebral hemorrhage (ICH) remains a major medical problem, for which there is no effective treatment. However, extensive experimental and clinical research carried out in recent years has brought to light new exciting ideas for novel potential treatments. First, it was well documented that the management of hypertension helps to prevent new and recurrent ICH. Also, development of new guidelines for management of hypertension after the onset of the ICH may help in more effective ICH treatment. Existing contemporary data collected from preclinical studies indicates that ICH-induced inflammation represents a key factor leading to secondary brain damage, suggesting that some anti-inflammatory approaches can be used to treat hemorrhagic stroke. In this article, beyond discussing implications related to hypertension, we will summarize important (but not all) new discoveries connecting the role of inflammation to ICH pathology. Selected aspects of inflammatory response including the role of cytokines, transcription factor nuclear factor-kB, microglia activation, astrogliosis, and complement activation will be introduced. We will also discuss the role for reactive oxygen species and metalloproteinases in ICH pathogenesis and introduce basic knowledge on the nature of ICH-induced cell death including apoptosis. Potential targets for intervention and translation will be discussed.
Collapse
Affiliation(s)
- Jaroslaw Aronowski
- Stroke Program, Department of Neurology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
7
|
Hemley SJ, Bilston LE, Cheng S, Stoodley MA. Aquaporin-4 expression and blood–spinal cord barrier permeability in canalicular syringomyelia. J Neurosurg Spine 2012; 17:602-12. [DOI: 10.3171/2012.9.spine1265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Noncommunicating canalicular syringomyelia occurs in up to 65% of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood–spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia.
Methods
A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction.
Results
Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls.
Conclusions
This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.
Collapse
Affiliation(s)
- Sarah J. Hemley
- 1The Australian School of Advanced Medicine, Macquarie University
| | - Lynne E. Bilston
- 2Neuroscience Research Australia
- 3Prince of Wales Clinical School, University of New South Wales; and
| | - Shaokoon Cheng
- 2Neuroscience Research Australia
- 4School of Medical Science, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
8
|
Pedersen ED, Løberg EM, Vege E, Daha MR, Maehlen J, Mollnes TE. In situ deposition of complement in human acute brain ischaemia. Scand J Immunol 2009; 69:555-62. [PMID: 19439017 DOI: 10.1111/j.1365-3083.2009.02253.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental animal models indicate that complement contributes to tissue damage during brain ischaemia and stroke, but limited data are available for a role of the complement in human stroke. We, therefore, evaluated whether acute ischaemia leads to complement activation in human brain. Indirect immunohistochemical staining was performed on paraffin-embedded, formalin-fixed human brain from 10 patients and 10 controls. Complement components C1q, C3c and C4d were detected in all ischaemic lesions, suggesting activation via the classical pathway. C9, C-reactive protein and IgM were detected in necrotic zones. Marked CD59 and weak CD55 expression were found in normal brains, but these complement regulators were virtually absent in ischaemic lesions. Modest amounts of mannose-binding lectin (MBL), MBL-associated serine protease-2 and factor B were found in both ischaemic lesions and controls. These data suggest that increased deposition of complement components combined with decreased expression of complement regulators is a possible mechanism of tissue damage during ischaemia in human brain.
Collapse
Affiliation(s)
- E D Pedersen
- Faculty of Medicine, Institute of Immunology, Rikshospitalet University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
9
|
Damodaran TV, Bilska MA, Rahman AA, Abou-Doni MB. Sarin causes early differential alteration and persistent overexpression in mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 2002; 27:407-15. [PMID: 12064357 DOI: 10.1023/a:1015508132137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotoxic effects of single dose of 0.5 x LD50 sarin (O-isopropylmethylphosphonoflouridate) on central nervous system (CNS) of male Sprague-Dawley rats were studied. We investigated the mRNA expression of the astroglial marker genes glial fibrillary acidic protein (GFAP) and vimentin to evaluate the fate of astroglial and neuronal cells, because reactive gliosis is very often used to assess the extent of CNS damage. Rats were treated with 50 microg/kg/ml of sarin and terminated at the time-points 1 and 2 hours and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted and Northern blots were hybridized with cDNA probes for GFAP and vimentin, as well as 28S RNA (control). The data obtained indicate that a single dose of sarin (0.5 x LD50) showed induction in the transcript levels of GFAP and vimentin in the cortex, cerebellum, brainstem and midbrain, and spinal cord. The induction showed distinct spatial-temporal differences for each tissue studied. Both GFAP and vimentin were induced at 1 hour in all the tissues studied except brainstem, where moderate and high levels of GFAP induction were noted at 1 and 3 days. Overexpressed transcript levels of GFAP and vimentin remained high in more responsive tissues such as the brainstem and midbrain. Other tissues, such as the cortex, spinal cord, and cerebellum showed a more downward trend for either GFAP or vimentin, or both, transcript levels at 7 days. It is noteworthy that both cortex (318 +/- 12%) and spinal cord (368 +/- 12%) showed relatively higher induction of GFAP, whereas cortex alone showed the highest level of overexpressed vimentin transcript levels (284 +/- 11%). Overall it is also clear that both GFAP and vimentin are needed for the effective recovery involving co-ordinated alternating up- and downregulation of these two key astrocyte genes, depending on tissue specificity. The changes seen in the transcript levels of GFAP and vimentin may be the result of astrocyte dysfunction and loss, accompanied by compensatory proliferation and dedifferentiation of the astroglia. These changes could affect the neuronal cell types, thus altering the neuron-glia homeostasis.
Collapse
Affiliation(s)
- Tirupapuliyar V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
10
|
Damodaran TV, Abou-Donia MB. Alterations in levels of mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of hens treated with diisopropyl phosphorofluoridate (DFP). Neurochem Res 2000; 25:809-16. [PMID: 10943999 DOI: 10.1023/a:1007565407341] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diisopropyl phophorofluoridate (DFP) produces organophosphorus-ester induced delayed neurotoxicity (OPIDN) in the hen, human and other sensitive species. We studied the effect of DFP admimistration (1.7 mg/kg/s.c.) on the expression of Intermediate Filament (IF) proteins: Glial Fibrillary Acidic Protein (GFAP) and vimentin which are known indicators of neurotoxicity and astroglial pathology. The hens were sacrificed at different time points i.e. 1,2,5,10 and 20 days. Total RNA was extracted from the following brain regions: cerebrum, cerebellum, and brainstem as well as spinal cord. Northern blots prepared using standard protocols were hybridized with GFAP and vimentin as well as beta-actin and 18S RNA cDNA (controls) probes. The results indicate a differential/spatial/temporal regulation of GFAP and vimentin levels which may be due to the result of disruption of glial-neuronal network. The GFAP transcript levels reached near control levels (88% and 95%) at 20 days post DFP treatment after an initial down-regulation (60% and 73%) in highly susceptible tissues like spinal cord and brainstem respectively. However vimentin transcript levels remained down-regulated (61% and 53%) at 20 days after an early reduced levels(47% and 55%) for spinal cord and brainstem respectively. This may be due to the astroglial pathology resulting in neuronal alterations or vice-versa. In cerebellum (less susceptile tissue) GFAP levels were moderately down-regulated at 1,2 and 5 days and reached near control values at 10 and 20 days. Vimentin was rapidly reinduced (128%) in cerebellum at 5 days and remained at the same level at 10 days and then returned to control values at 20 days after an initial down-regulation at 1 and 2 days. Thus these alterations were less drastic in cerebellum as indicated by initial susceptibility followed by rapid recovery. On the other hand both GFAP and vimentin levels were upregulated from 2 days onwards in the non-susceptible tissue cerebrum, implying protective mechanisms from the beginning. Hence the DFP induced astroglial pathology as indicated by the complex expression profile of GFAP and vimentin mRNA levels may be playing an important role in the delayed degeneration of axons or is the result of progressive degeneration of axons in OPIDN.
Collapse
Affiliation(s)
- T V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | |
Collapse
|
11
|
Yamamoto T, Armstrong D, Shibata N, Kanazawa M, Kobayashi M. Immature astrocytes in Fukuyama congenital muscular dystrophy: an immunohistochemical study. Pediatr Neurol 1999; 20:31-7. [PMID: 10029257 DOI: 10.1016/s0887-8994(98)00089-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies of Fukuyama congenital muscular dystrophy have focused on abnormalities of the basement membrane in muscle and brain. The cerebral cortex has a unique basement membrane at the glia limitans, which is intimately related to astrocytes in the developing brain, and the basement membrane may be partially produced by the astrocyte. In this study the cerebral astrocytes in six patients with Fukuyama congenital muscular dystrophy, including two fetal patients, were characterized by immunohistochemical study. In fetal Fukuyama congenital muscular dystrophy, astrocytes reacted less to antibodies of glial fibrillary acidic protein, S-100 protein, and alphaB-crystallin than control astrocytes, but in postnatal Fukuyama congenital muscular dystrophy, astrocytes reacted more to these antibodies and displayed beading of processes. Moreover, vimentin was positive in the astrocytes of two postnatal Fukuyama congenital muscular dystrophy patients. This astrocytic appearance may suggest immaturity of astrocytes in Fukuyama congenital muscular dystrophy. Astrocytes exhibiting beaded cytoplasmic processes were prominent at the subpia of the cortex and around vessels. The authors hypothesize that these immature astrocytes are unable to participate in the function of the cortical basement membrane, which is defective in Fukuyama congenital muscular dystrophy. Studies of neurons and meninges were similar to those of control subjects.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Japan
| | | | | | | | | |
Collapse
|
12
|
Akiguchi I, Tomimoto H, Suenaga T, Wakita H, Budka H. Alterations in glia and axons in the brains of Binswanger's disease patients. Stroke 1997; 28:1423-9. [PMID: 9227695 DOI: 10.1161/01.str.28.7.1423] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Although increasing attention is being paid to Binswanger's disease, a form of vascular dementia characterized by diffuse white matter lesions, only limited information is available on the pathological changes that occur in the glia and axons in the white matter. We therefore investigated the brains of patients with Binswanger's disease to gain further insight into its pathophysiology. METHODS Autopsied brains from patients with Binswanger's disease (group 3; n = 17) were compared with those of nonneurological controls (group 1; n = 5) and controls with large cortical infarcts but without significant white matter lesions (group 2; n = 5). Glial fibrillary acidic protein (GFAP) was used as an immunohistochemical marker for astroglia, leukocyte common antigen (LCA) was used as a marker for microglia, and HLA-DR was used as a marker for activated microglia. Axonal damage was assessed by the accumulation of proteins, which are transported by fast axonal flow, amyloid protein precursor (APP), synaptophysin, and chromogranin A. RESULTS Although there was no difference in numerical density of GFAP-immunoreactive astroglia in each group, regressive astroglia were observed in 7 of 17 patients with Binswanger's disease. LCA-immunoreactive microglia were 1.7 times more numerous in Binswanger's disease than in group 1 (P < .05). HLA-DR-immunoreactive-activated microglia were 3.4 times and 2.1 times more numerous in Binswanger's disease as compared with group 1 (P < .01) and group 2 (P < .05), respectively. There was frequent perivascular lymphocyte cuffing, and clusters of macrophages with a decreased number of oligodendroglia were observed in the rarefied white matter. The grading scores for the number of axons immunoreactive for either APP, synaptophysin, or chromogranin A were significantly higher in Binswanger's disease than in group 1 or 2. CONCLUSIONS The pathological alterations in Binswanger's diseased brains include regressive changes in the astroglia and activation of the microglia with a decrease in the oligodendroglia, which were associated with the degradation of both myelin and axonal components. These results indicate that an inflammatory reaction and compromised axonal transport, mediated by chronic ischemia, may play an important role in the pathophysiology of Binswanger's disease.
Collapse
Affiliation(s)
- I Akiguchi
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
13
|
Shea TB. Role of glial-derived nexin in neuronal differentiation and in acute brain injury and potential involvement in exacerbation of neurodegeneration in Alzheimer's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 20:171-84. [PMID: 7795655 DOI: 10.1016/0165-0173(94)00010-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T B Shea
- Laboratories for Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178, USA
| |
Collapse
|
14
|
Missler M, Eins S, Böttcher H, Wolff JR. Postnatal development of glial fibrillary acidic protein, vimentin and S100 protein in monkey visual cortex: evidence for a transient reduction of GFAP immunoreactivity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 82:103-17. [PMID: 7842498 DOI: 10.1016/0165-3806(94)90153-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the cerebral cortex of some species, the gradual appearance of glial fibrillary acidic protein (GFAP) is often interpreted as reflecting the parallel maturation of neuronal connectivity. We studied the postnatal maturation of astrocytes in the primary visual cortex of Callithrix jacchus using antibodies against GFAP, vimentin and S100 protein as immunohistochemical markers. In the cortical grey matter of this species, the overall GFAP-immunoreactivity (IR) as measured by image analysis is high at birth (130% of the adult value), decreases until about 3 months (80%) and increases again towards adult values (100%). Vimentin-IR was high at birth, and declined towards 3 months and later. In contrast, S100-IR augmented postnatally in neuropil, and showed a laminar shift of maximum IR from layer IV to supragranular layers during ontogenesis. The decrease of GFAP-IR is predominantly due to changes in density of GFAP-positive (+) astrocytes within cortical tissue (newborn: 18,600 GFAP+astrocytes/mm3; 1 month: 11,600/mm3; 3 months: 5,700/mm3; adult: 10,200/mm3), while the overall number of astrocytes remained relatively constant as shown by the number of S100-positive astrocytic cell bodies. At times of low GFAP-IR a reduced area density of intermediate filaments was found in astrocytes by electron microscopy. The period of reduced GFAP-expression coincides with the time of prominent synapse remodeling in the visual cortex of marmosets. These data suggest that GFAP-expression may depend on functional conditions rather than time-dependent maturation.
Collapse
Affiliation(s)
- M Missler
- Department of Anatomy, University of Göttingen, FRG
| | | | | | | |
Collapse
|
15
|
Shea TB, Beermann ML, Honda T, Nixon RA. Secretion of amyloid precursor protein and laminin by cultured astrocytes is influenced by culture conditions. J Neurosci Res 1994; 37:197-207. [PMID: 8151728 DOI: 10.1002/jnr.490370205] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although normally quiescent, astrocytes in the adult brain respond to various types of brain injury by rapidly dividing, swelling, extending cellular processes, and expressing increased amounts of glial fibrillary acidic protein (GFAP). These phenomena are collectively referred to as "astrogliosis." Similarly, astroglia in primary culture stop dividing when they attain confluency, yet, as seen in situ, they retain their proliferative capacity for extended periods and resume rapid division when subcultured. To examine the impact of glial division on secretion of neurite-promoting factors, conditioned medium (CM) was removed from subconfluent, newly confluent, and long-term confluent ("aged") neonatal rat astrocyte cultures, and from aged confluent cultures that had been repassaged, "lesioned" (scraping with a rubber policeman), or triturated 3 days before harvest. Secretion of neurite-promoting factor(s) by glial cells into these CM was then assayed by treating neuroblastoma cultures with these various CM and quantitating neurite elaboration. Extensive neurite sprouting was elicited by CM from cultures just reaching confluency and from repassaged, lesioned, or triturated cultures. CM from aged confluent cultures did not induce sprouting. These results indicate that secretion of neurite-promoting factor(s) is regulated by glial division, and suggest that gliosis in situ may contribute to neurite sprouting by similar mechanisms. Immunoblot analysis demonstrated the presence in CM of varying amounts of laminin and amyloid precursor protein (APP), including isoforms containing the Kunitz-type protease inhibitor domain. CM from subconfluent cultures contained trace amounts of these proteins, but CM from cultures just reaching confluency contained significant amounts. Although CM from aged cultures contained barely detectable levels of either protein, trituration or repassage of aged cultures dramatically increased secretion of these proteins. APP- and laminin-enriched CM fractions promoted neuritogenesis to a similar level as respective unfractionated CM; anti-APP and anti-laminin antisera blocked this effect. Purified human brain APP promoted neuritogenesis when added to non-conditioned medium and aged CM. Increased secretion of APP and laminin therefore mediates at least a portion of CM-induced neuronal sprouting; these proteins may perform analogous functions during astrogliosis in situ.
Collapse
Affiliation(s)
- T B Shea
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02178
| | | | | | | |
Collapse
|
16
|
Arai N, Morimatsu Y, Mizutani T. Alteration of Astrocytes in Non-Gliotic Lesions after Protracted Non-Missile Head Injury. Neuropathology 1993. [DOI: 10.1111/j.1440-1789.1993.tb00220.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|