1
|
López-Ramos JC, Martínez-Lara E, Serrano J, Fernández P, Parras GG, Ruiz-Marcos A, Rodrigo J. Nitric oxide synthase system in the brain development of neonatal hypothyroid rats. Neuroscience 2025; 565:155-171. [PMID: 39461663 DOI: 10.1016/j.neuroscience.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.
Collapse
Affiliation(s)
- Juan Carlos López-Ramos
- División de Neurociencias, Universidad Pablo de Olavide, ES-41013 Sevilla, Spain; Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain.
| | - Esther Martínez-Lara
- Departmento de Biología Experimental, Campus de Las Lagunillas s/n, Universidad de Jaén, 23071 Jaén, Spain
| | - Julia Serrano
- Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain
| | | | - Gloria G Parras
- División de Neurociencias, Universidad Pablo de Olavide, ES-41013 Sevilla, Spain
| | | | - José Rodrigo
- Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain
| |
Collapse
|
2
|
Coletti R, de Lima JBM, Vechiato FMV, de Oliveira FL, Debarba LK, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. J Neuroendocrinol 2019; 31:e12686. [PMID: 30633838 DOI: 10.1111/jne.12686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) negatively modulates the secretion of vasopressin (AVP), oxytocin (OT) and atrial natriuretic peptide (ANP) induced by the increase in extracellular osmolality, whereas carbon monoxide (CO) and hydrogen sulphide (H2 S) act to potentiate it; however, little information is available for the osmotic challenge model about whether and how such gaseous systems modulate each other. Therefore, using an acute ex vivo model of hypothalamic and neurohypophyseal explants (obtained from male 6/7-week-old Wistar rats) under conditions of extracellular iso- and hypertonicity, we determined the effects of NO (600 μmol L-1 sodium nitroprusside), CO (100 μmol L-1 tricarbonylchloro[glycinato]ruthenium [II]) and H2 S (10 mmol L-1 sodium sulphide) donors and nitric oxide synthase (NOS) (300 μmol L-1 Nω -methyl-l-arginine [LNMMA]), haeme oxygenase (HO) (200 μmol L-1 Zn(II) deuteroporphyrin IX 2,4-bis-ethylene glycol [ZnDPBG]) and cystathionine β-synthase (CBS) (100 μmol L-1 aminooxyacetate [AOA]) inhibitors on the release of hypothalamic ANP and hypothalamic and neurohypophyseal AVP and OT, as well as on the activities of NOS, HO and CBS. LNMMA reversed hyperosmolality-induced NOS activity, and enhanced hormonal release by the hypothalamus and neurohypophysis, in addition to increasing CBS and hypothalamic HO activity. AOA decreased hypothalamic and neurohypophyseal CBS activity and hormonal release, whereas ZnDPBG inhibited HO activity and hypothalamic hormone release; however, in both cases, AOA did not modulate NOS and HO activity and ZnDPBG did not affect NOS and CBS activity. Thus, our data indicate that, although endogenous CO and H2 S positively modulate AVP, OT and ANP release, only NO plays a concomitant role of modulator of hormonal release and CBS activity in the hypothalamus and neurohypophysis and that of HO activity in the hypothalamus during an acute osmotic stimulus, which suggests that NO is a key gaseous controller of the neuroendocrine system.
Collapse
Affiliation(s)
- Ricardo Coletti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Wood CE, Giroux D. Expression of Nitric Oxide Synthase Isoforms in the Ovine Fetal Brain: Alteration by Hormonal and Hemodynamic Stimuli. ACTA ACUST UNITED AC 2016; 13:329-37. [PMID: 16753312 DOI: 10.1016/j.jsgi.2006.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Nitric oxide (NO) is synthesized in the brain through the action of three isoforms of nitric oxide synthase (NOS). The local generation of NO in neurons, glia, and vasculature modulates neuronal activity, as well as regional cerebral blood flow. We propose that, in the fetal brain, cerebral hypoperfusion alters the expression of NOS isoforms, and that estrogen administration modulates the NOS response to hypoperfusion. METHODS Sixteen chronically catheterized fetal sheep of known gestational age (124 to 128 days' gestation) were subjected to a 10-minute period of brachiocephalic occlusion (BCO) or to sham BCO; half of these fetuses were subjected to subcutaneous implant, which released 17beta-estradiol (E2; 0.25 mg/d) or placebo. Brain tissue was collected for mRNA and protein extraction 1 hour after the start of the BCO or sham BCO. RESULTS All three isoforms of NOS were identified in fetal brain at both the mRNA and protein levels. BCO increased NOS1 (hippocampus, brainstem), NOS2 (hypothalamus), and NOS3 (hippocampus, cortex) at the protein level. Estradiol alone increased NOS1 (brainstem, cortex), NOS2 (hippocampus, hypothalamus), and NOS3 (brainstem, cerebellum) at the protein level, changes that were not mirrored at the mRNA level. The combination of BCO and estradiol produced smaller changes in NOS1 (brainstem, cortex), NOS2 (hippocampus, hypothalamus), and NOS3 (brainstem) protein levels than those produced by either stimulus alone. CONCLUSIONS We conclude that the fetal brain expresses all isoforms of NOS, and that NOS expression is altered by both BCO and estradiol, but that the most prevalent effect of estradiol is to reduce specific NOS responses to cerebral hypoperfusion. The present results suggest the possibility that the neuroendocrine responses to estradiol and BCO are modulated by central nervous system (CNS) NO biosynthesis.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA.
| | | |
Collapse
|
4
|
Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Carbon monoxide and nitric oxide interactions in magnocellular neurosecretory neurones during water deprivation. J Neuroendocrinol 2015; 27:111-22. [PMID: 25494574 DOI: 10.1111/jne.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) and carbon monoxide (CO) are diffusible gas messengers in the brain. Previously, we have shown their independent involvement in central fluid/electrolyte homeostasis control. In the present study, we investigated a possible functional interaction between NO/CO in the regulation of vasopressin (VP) and oxytocin (OT) magnocellular neurosecretory cells (MNCs) activity in euhydrated (EU) and dehydrated [48-h water-deprived (48WD)] rats. Using brain slices from EU and 48WD rats, we measured, by immunohistochemistry, the expression of neuronal NO synthase (nNOS, which synthesises NO) and haeme-oxygenase (HO-1, which synthesises CO) in the hypothalamic supraoptic nucleus (SON). In addition, we used patch-clamp electrophysiology to investigate whether regulation of SON MNC firing activity by endogenous CO was dependent on NO bioavailability and GABAergic inhibitory synaptic function. We found a proportion of OT and VP SON MNCs in EU rats to co-express both of HO-1 and nNOS (33.2 ± 2.9% and 15.3 ± 1.4%, respectively), which was increased in 48WD rats (55.5 ± 0.9% and 21.0 ± 1.7%, respectively, P < 0.05 for both). Inhibition of endogenous HO activity [chromium mesoporphyrin IX chloride (CrMP) 20 μm] induced MNC membrane hyperpolarisation and decreased firing activity, and these effects were blunted by previous blockade of endogenous NOS activity (l-NAME, 2 mm) or blockade of inhibitory GABA function [Picrotoxin (Sigma-Aldrich, St Louis, MO, USA), 50 μm]. No significant changes in SON NO bioavailability (4,5 diaminofluorescein diacetate fluorescence) were observed after CrMP treatment. Taken together, our results support a state-dependent functional inter-relationship between NO and CO in MNCs, in which CO acts as an excitatory gas molecule, whose effects are largely dependent on interactions with the inhibitory SON signals NO and GABA.
Collapse
Affiliation(s)
- W L Reis
- Department of Physiology, Georgia Regents University, Augusta, GA, USA; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
5
|
Silva MPD, Cedraz-Mercez PL, Varanda WA. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms. Braz J Med Biol Res 2014; 47:90-100. [PMID: 24519124 PMCID: PMC4051181 DOI: 10.1590/1414-431x20133326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/22/2013] [Indexed: 01/24/2023] Open
Abstract
Physiological evidence indicates that the supraoptic nucleus (SON) is an
important region for integrating information related to homeostasis of body
fluids. Located bilaterally to the optic chiasm, this nucleus is composed of
magnocellular neurosecretory cells (MNCs) responsible for the synthesis and
release of vasopressin and oxytocin to the neurohypophysis. At the cellular
level, the control of vasopressin and oxytocin release is directly linked to the
firing frequency of MNCs. In general, we can say that the excitability of these
cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane
properties of the MNCs themselves and 2) synaptic input from circumventricular
organs that contain osmosensitive neurons. It has also been demonstrated that
MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the
study of their intrinsic membrane properties became imperative to explain the
osmosensitivity of MNCs. In addition to this, the discovery that several
neurotransmitters and neuropeptides can modulate their electrical activity
greatly increased our knowledge about the role played by the MNCs in fluid
homeostasis. In particular, nitric oxide (NO) may be an important player in
fluid balance homeostasis, because it has been demonstrated that the enzyme
responsible for its production has an increased activity following a hypertonic
stimulation of the system. At the cellular level, NO has been shown to change
the electrical excitability of MNCs. Therefore, in this review, we focus on some
important points concerning nitrergic modulation of the neuroendocrine system,
particularly the effects of NO on the SON.
Collapse
Affiliation(s)
- M P da Silva
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P L Cedraz-Mercez
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - W A Varanda
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
6
|
Luce V, Fernandez Solari J, Rettori V, De Laurentiis A. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. ACTA ACUST UNITED AC 2014; 188:31-9. [DOI: 10.1016/j.regpep.2013.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/31/2023]
|
7
|
da Silva MP, Ventura RR, Varanda WA. Hypertonicity increases NO production to modulate the firing rate of magnocellular neurons of the supraoptic nucleus of rats. Neuroscience 2013; 250:70-9. [PMID: 23850590 DOI: 10.1016/j.neuroscience.2013.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 06/10/2013] [Accepted: 06/29/2013] [Indexed: 11/27/2022]
Abstract
Increases in plasma osmolality enhance nitric oxide (NO) levels in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and modulate the secretion of both vasopressin (VP) and oxytocin (OT). In this paper, we describe the effects of hypertonicity on the electrical properties of MNCs by focusing on the nitrergic modulation of their activity in this condition. Membrane potentials were measured using the patch clamp technique, in the presence of both glutamatergic and GABAergic neurotransmission blockers, in coronal brain slices of male Wistar rats. The recordings were first made under a control condition (295 mosm/kg H2O), then in the presence of a hypertonic stimulus (330 mosm/kg H2O) and, finally, with a hypertonic stimulus plus 500 μM L-Arginine or 100 μM N-nitro-L-Arginine methyl ester hydrochloride (L-NAME). Hypertonicity per se increased the firing frequency of the neurons. L-Arginine prevented the increase in fire frequency induced by hypertonic stimulus, and L-NAME (inhibitor of nitric oxide synthase) induced an additional increase in frequency when applied together with the hypertonic solution. Moreover, L-Arginine hyperpolarizes the resting potential and decreases the peak value of the after-hyperpolarization; both effects were blocked by L-NAME and hypertonicity and/or L-NAME reduced the time constant of the rising phase of the after-depolarization. These results demonstrate that an intrinsic nitrergic system is part of the mechanisms controlling the excitability of MNCs of the SON when the internal fluid homeostasis is disturbed.
Collapse
Affiliation(s)
- M P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
8
|
Monasterio N, Morales T. Nitric oxide has a role in attenuating the neuroendocrine response to anaphylactoid stress during lactation. Brain Res 2011; 1402:54-66. [PMID: 21696708 DOI: 10.1016/j.brainres.2011.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023]
Abstract
Stress increases nitric oxide (NO) production in the paraventricular nucleus of the hypothalamus (PVH). Lactation diminishes the response to stress and increases basal NO production markers in the PVH of the dam. This study investigated whether lactation modified the anaphylactic reaction to egg white (EW) injection, and if nitric oxide regulates the neuroendocrine response to this stressor. The activational response of PVH to EW was assessed by c-Fos immunohistochemistry, and NO production was determined by histological staining of NADPH-diaphorase and neuronal nitric oxide synthase (nNOS) and by measuring the concentration of total nitrates and nitrites (NOx) in the hypothalamus of lactating and diestrus rats. EW injection significantly increased the number of Fos-positive neurons in the parvocellular subdivision of the PVH in diestrus, but not in lactating rats. Similarly, EW injection increased the number of NADPH-diaphorase- and nNOS-positive cells in the PVH of diestrus rats, but it did not alter the already increased basal number of NO-positive cells in lactating rats. Furthermore, the total concentration of NOx in the hypothalamus, the circulating level of corticosterone and interleukin-6 increased significantly after EW in diestrus, but not in lactating rats, compared to their corresponding controls. Intracerebral administration of L-NAME, a general NOS inhibitor, reversed the attenuation of the activational response to EW in the PVH of lactating rats. The present results show that lactation diminishes the anaphylactoid reaction to EW compared to that in diestrus rats. This attenuation was absent after L-NAME treatment, suggesting that sustained NO production in the PVH during lactation may limit the neuroendocrine response to stress.
Collapse
Affiliation(s)
- Nela Monasterio
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Querétaro, Mexico
| | | |
Collapse
|
9
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
10
|
Differential involvement of noradrenaline and nitric oxide in the regulation of vasopressin and oxytocin expression in rat supraoptic nucleus. J Neurosci Res 2011; 89:764-72. [DOI: 10.1002/jnr.22568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 11/07/2022]
|
11
|
Stabile AM, Moreto V, Antunes-Rodrigues J, Carnio EC. Central but not systemic inhibition of inducible nitric oxide synthase modulates oxytocin release during endotoxemic shock. Peptides 2010; 31:706-11. [PMID: 19932725 DOI: 10.1016/j.peptides.2009.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 11/05/2009] [Accepted: 11/08/2009] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by i.v. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6h post-injection. LPS significantly increased plasma OT concentration at 2 and 4h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock.
Collapse
Affiliation(s)
- Angelita Maria Stabile
- Department of General and Specialized Nursing, University of São Paulo, College of Nursing, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
The hypothalamic endocannabinoid system participates in the secretion of oxytocin and tumor necrosis factor-alpha induced by lipopolysaccharide. J Neuroimmunol 2010; 221:32-41. [DOI: 10.1016/j.jneuroim.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 01/21/2023]
|
13
|
Li C, Marshall CT, Lu C, Ding J, Wang H, Roisen FJ, Xiao M. The dynamic distribution of fluoro-gold and its interrelation with neural nitric oxide synthase following intracerebroventricular injection into rat brain. Biotech Histochem 2009; 81:41-50. [PMID: 16760126 DOI: 10.1080/10520290600763293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We mapped the dynamic distribution of fluoro-gold (FG) within rat brain following intracerebroventricular (icv) injection into the lateral ventricle and observed its interrelation with neural nitric oxide synthase (nNOS) using FG fluorescent microphotography combined with nNOS immunohistochemistry. We also detected the amount of icv administered FG entering the peripheral circulation using a fluorescence microplate assay. The degree of periventricular penetration of FG was significantly increased over time. At 2 min after icv injection, FG primarily labeled the choroid plexus in the lateral and third ventricles, with limited penetration into the ependyma and the subependyma of the same ventricles. Some FG/nNOS-double labeled cerebrospinal fluid-contacting neurons were observed in these ventricles as well. At 15 and 30 min, FG penetrated mainly into forebrain ventricular organs and parenchymal structures. Many FG/nNOS double labeled neurons were found at each of these sites. In addition, at 30 min intense FG labeling was found in the hypophysis, while limited periventricular penetration of FG was detected in the hindbrain circumventricular areas. In the peripheral circulation, a low concentration of FG was detected 2 min after icv injection. The concentration increased slowly, peaked at 20 min, then gradually decreased until the end of the experiment at 30 min. These findings indicate that dynamic penetration of icv administrated agents into the periventricular tissues and peripheral circulation should be considered when designing icv experiments.
Collapse
Affiliation(s)
- C Li
- Department of Human Anatomy & Histoembryology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ventura R, Aguiar J, Antunes-Rodrigues J, Varanda W. Nitric oxide modulates the firing rate of the rat supraoptic magnocellular neurons. Neuroscience 2008; 155:359-65. [DOI: 10.1016/j.neuroscience.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
|
15
|
Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 2008; 35:17-27. [DOI: 10.1007/s00726-007-0630-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/31/2007] [Indexed: 02/04/2023]
|
16
|
Saito T, Dayanithi G, Saito J, Onaka T, Urabe T, Watanabe TX, Hashimoto H, Yokoyama T, Fujihara H, Yokota A, Nishizawa S, Hirata Y, Ueta Y. Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. J Neuroendocrinol 2008; 20:207-19. [PMID: 18047553 DOI: 10.1111/j.1365-2826.2007.01632.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salusin-alpha and -beta were recently discovered as bioactive endogenous peptides. In the present study, we investigated the effects of chronic osmotic stimuli on salusin-beta-like immunoreactivity (LI) in the rat hypothalamo-neurohypophyseal system. We examined the effects of salusin-beta on synaptic inputs to the rat magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and neurohypophyseal hormone release from both freshly dissociated SONs and neurohypophyses in rats. Immunohistochemical studies revealed that salusin-beta-LI neurones and fibres were markedly increased in the SON and the magnocellular division of the paraventricular nucleus after chronic osmotic stimuli resulting from salt loading for 5 days and dehydration for 3 days. Salusin-beta-LI fibres and varicosities in the internal zone of the median eminence and the neurohypophysis were also increased after osmotic stimuli. Whole-cell patch-clamp recordings from rat SON slice preparations showed that salusin-beta did not cause significant changes in the excitatory and inhibitory postsynaptic currents of the MNCs. In vitro hormone release studies showed that salusin-beta evoked both arginine vasopressin (AVP) and oxytocin release from the neurohypophysis, but not the SON. In our hands, in the neurohypophysis, a significant release of AVP and oxytocin was observed only at concentrations from 100 nm and above of salusin-beta. Low concentrations below 100 nm were ineffective both on AVP and oxytocin release. We also measured intracellular calcium ([Ca(2+)](i)) increase induced by salusin-beta on freshly-isolated single nerve terminals from the neurohypophysis devoid of pars intermedia. Furthermore, this salusin-beta-induced [Ca(2+)](i) increase was blocked in the presence of high voltage activated Ca(2+)channel blockers. Our results suggest that salusin-beta may be involved in the regulation of body fluid balance by stimulating neurohypophyseal hormone release from nerve endings by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- T Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li M, Vizzard MA, Jaworski DM, Galbraith RA. The weight loss elicited by cobalt protoporphyrin is related to decreased activity of nitric oxide synthase in the hypothalamus. J Appl Physiol (1985) 2006; 100:1983-91. [PMID: 16469935 DOI: 10.1152/japplphysiol.01169.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Administration of cobaltic protoporphyrin IX (CoPP) into the third ventricle of the brain by intracerebroventricular injection in rodents is known to result in transient hypophagia and remarkably prolonged weight loss. The mechanism of action of CoPP in eliciting these effects is unknown. It is known that nitric oxide plays a role in food intake and that the hyperphagia that results from a wide variety of genetic, physiological, and pharmacological stimuli can be blocked by the administration of inhibitors of the enzyme nitric oxide synthase (NOS). We demonstrate that intracerebroventricular administration of compounds that alter nitrergic tone can also change food ingestion and weight gain patterns in normophagic rats. We also demonstrate that CoPP decreases NOS activity but that it paradoxically increases neuronal NOS transcript expression and increases neuronal NOS protein content on Western blotting.
Collapse
Affiliation(s)
- Muyao Li
- Department of Medicine, University of Vermont, C209 Given Bldg., 89 Beaumont Ave., Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
18
|
Xiao M, Ding J, Wu L, Han Q, Wang H, Zuo G, Hu G. The distribution of neural nitric oxide synthase-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxytocin. Brain Res 2005; 1038:150-62. [PMID: 15757631 DOI: 10.1016/j.brainres.2005.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/07/2005] [Accepted: 01/09/2005] [Indexed: 02/03/2023]
Abstract
The detailed distribution of neural nitric oxide synthase (nNOS)-positive cerebrospinal fluid-contacting neurons (CSF-CN) was studied in the wall of the third ventricle of rats by anti-nNOS immunohistochemistry. The coexistence of nNOS and 8-arginine vasopressin (AVP) or oxytocin (OT) was also investigated in the CSF-CN using double labeling immunohistochemistry. The results demonstrated a widespread occurrence of nNOS-CSF-CN throughout the wall of the hypothalamic third ventricle. The vast majority of nNOS-CSF-CN cell bodies were of magnocellular type, commonly classified as oval, fusiform, multipolar, and inverted pear shape. These cell bodies were located in the ependyma, the subependyma, or the parenchyma, and their processes inserted in the ependymal layer or directly contacted with the CSF space. Electron microscopy demonstrated many nNOS-immunoreactive somas, dendrites, and/or axons that were situated at the subependyma, the ependyma, or the supraependyma. Generally, the distribution of OT-CSF-CN in the third ventricular wall was similar to the nNOS-CSF-CN and the ratio of NOS/OT co-expression was approximately 88%. In comparison, the distribution of AVP-CSF-CN was mainly restricted to the rostral part of the third ventricle and the ratio of nNOS/AVP co-expression was only about 6%. The widespread presence of nNOS-CSF-CN-expressing OT in the third ventricular region suggests that NO is an important messenger in the CSF-hypothalamo-hypophyseal neuroendocrine regulation that may in part act in concert with OT.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
19
|
Popeski N, Woodside B. Central nitric oxide synthase inhibition disrupts maternal behavior in the rat. Behav Neurosci 2005; 118:1305-16. [PMID: 15598139 DOI: 10.1037/0735-7044.118.6.1305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blocking nitric oxide (NO) production, by 3rd ventricle administration of a nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 250 microg/5 microl, postpartum [pp]) decreased milk ejections in Day 10 pp rats. On Day 4 pp, L-NAME treatment eliminated pup retrieval and at both stages of lactation suppressed maternal aggression. Fewer rats treated with L-NAME on Day 10 pp retrieved 4-day-old pups than controls, although all nursed older litters. Following exposure to a mobile intruder, Fos expression was lower in the medial preoptic area and the bed nucleus of the stria terminalis in L-NAME-treated rats than in controls but was lower in the medial amygdala only following exposure to an anaesthetized intruder. Thus, the elevated levels of NO observed in lactation may contribute to the mechanism(s) that mediate maternal behavior and aggression.
Collapse
Affiliation(s)
- N Popeski
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Ventura RR, Giusti-Paiva A, Gomes DA, Elias LLK, Antunes-Rodrigues J. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neurosci Lett 2005; 379:75-80. [PMID: 15823420 DOI: 10.1016/j.neulet.2004.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/06/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
Nitric oxide, an endogenous gas produced by nitric oxide synthase (NOS), has been described as a neuromodulator of hormone secretion, including the neurohypophysial peptides oxytocin (OT) and vasopressin (AVP), hormones involved in the sodium and water homeostasis. The presence of NOS in the hypothalamic nuclei as well as in the circumventricular organs suggests a nitrergic regulation of OT and AVP secretion. Thus, the aim of this study was to evaluate the effect of 7-nitroindazole (7-NI), a selective inhibitor of neuronal NOS, in the plasma OT and AVP levels in rats submitted to a short and long-term salt loading. We also evaluated the NOS activity in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Our data showed an increase of plasma OT and AVP levels in both short and long-term salt loading. The augment of plasma OT and AVP levels was accompanied by an increase of NOS activity in the SON and PVN. The injection of 7-NI potentiated the increase of plasma OT induced by salt loading, but inhibited the increase of plasma AVP in the same experimental conditions. These results indicate that, under short and prolonged osmotic stimulation, nitric oxide may differentially control the neurohypophysial secretion.
Collapse
Affiliation(s)
- Renato Rizo Ventura
- Department of Physiology, School of Medicine of Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
21
|
Yuan Q, Scott DE, So KF, Wu W. Developmental changes of nitric oxide synthase expression in the rat hypothalamoneurohypophyseal system. ACTA ACUST UNITED AC 2005; 288:36-45. [PMID: 16342209 DOI: 10.1002/ar.a.20271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study investigated the immunohistochemical localization of neuronal nitric oxide synthase (nNOS) in the hypothalamoneurohypophyseal system (HNS) of the developing rats on postnatal day 1 (PN1), 7 (PN7), 14 (PN14), 21 (PN21), and the adult rats. The nNOS-positive neurons were not discernable in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the median eminence (ME) at PN1 and PN7. A few neurons positive for nNOS were first detected at PN14. At PN21, the nNOS-positive cells in SON and PVN rapidly increased in number. The pattern of nNOS expression at this stage approached that of the adult. Moreover, the increase of nNOS expression in the SON and PVN during the postnatal period was accompanied by the maturation of arginine vasopressin (AVP) and oxytocin (OT) neurons as indicated by the number and size of OT or AVP neurons in the SON and PVN. The patterns of AVP versus OT expression also reached that of the adult by the end of the third postnatal week. The time course of the change in nNOS expression coincided with the maturation of AVP and OT neurons in the HNS and suggested that NO synthesized by conversion of NOS is involved in the modulation of activity of neurons in the SON and PVN of the HNS.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
22
|
Gomes DA, Reis WL, Ventura RR, Giusti-Paiva A, Elias LLK, Cunha FQ, Antunes-Rodrigues J. The role of carbon monoxide and nitric oxide in hyperosmolality-induced atrial natriuretic peptide release by hypothalamus in vitro. Brain Res 2004; 1016:33-9. [PMID: 15234249 DOI: 10.1016/j.brainres.2004.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2004] [Indexed: 11/25/2022]
Abstract
We evaluated the participation of the nitrergic and carbon monoxide (CO) systems in the atrial natriuretic peptide (ANP) release induced by osmotic stimulation of the rat anterior and medial basal hypothalamus (BH) fragments in vitro. The increase in the medium osmolality (NaCl, 340 mOsm/kg H2O) induced an elevated ANP release, which was associated with a decrease in nitric oxide synthase (NOS) activity (p<0.001), nitric oxide (NO) production and nitrate (p<0.001) release into the medium. The NO donors sodium nitroprusside (SNP, 300 microM), S-nitroso-N-acetylpenicillamine (SNAP, 300 microM) and 3-morpholinylsydnoneimine chloride (SIN-1, 300 microM) promoted a significant decrease in ANP release in response to hyperosmolality (p<0.001). ANP release observed in the present study did not result from injury to the BH caused by the increase in medium osmolality nor a toxic effect of the NO donors as demonstrated by the ANP release after incubation with KCl (56 mM). Furthermore, hyperosmolality or NO donors did not increase the LDH content in the medium. The hyperosmotic-induced ANP release and reduction of NOS activity were prevented by the heme oxygenase inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG). In conclusion, these results suggest that NO, the production of which is dependent on CO, modulates the osmolality-induced ANP release by BH fragments.
Collapse
Affiliation(s)
- Dayane Aparecida Gomes
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Av. Bandeirantes 3900, Ribeirao Preto, SP 14090-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Terrell ML, Salas N, Bui V, Summy-Long JY, Kadekaro M. NO inhibition of the magnocellular neuroendocrine system in rats is independent of cGMP signaling pathway. Exp Neurol 2004; 184:846-56. [PMID: 14769377 DOI: 10.1016/s0014-4886(03)00305-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 04/16/2003] [Accepted: 06/06/2003] [Indexed: 11/22/2022]
Abstract
Our objective was to test the hypothesis that the cGMP signal-transduction mechanism mediates nitric oxide's (NO) modulation of oxytocin (OT) and vasopressin (VP) secretion from the hypothalamo-neurohypophysial system. Three studies were conducted in adult male Sprague-Dawley rats: (1a) Euhydrated rats received an intracerebroventricular (icv) infusion (1 microl/min for 30 min) of artificial cerebrospinal fluid (aCSF), vehicle (2.6% dimethyl sulfoxide [DMSO]) or 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) (0.05 microg/microl), an inhibitor of soluble guanylyl cyclase (sGC). ODQ did not affect basal levels of plasma VP or OT; (1b) Rats dehydrated for 24 h received aCSF or 8-Br-cGMP (icv), a membrane-permeable analog of cGMP, and plasma hormones were measured 2 min later. 8-Br-cGMP did not significantly change VP or OT levels; (2) Rats ingested water or 2% NaCl for 4 days, and NO synthase (NOS) and sGC activities were measured in posterior pituitaries, the anatomical site of hormone secretion. Salt loading enhanced (P < 0.001) production of [(14)C]citrulline, the coproduct of NO synthesis, without altering cGMP; (3) One SON was microdialyzed with [(14)C]arginine and NOS and sGC activities were quantified in microdialysates during intravenous (iv) infusion of isotonic or hypertonic saline in awake and anesthetized rats. In awake rats, [(14)C]citrulline recovery, but not cGMP, increased (P < 0.05) during intravenous infusion of both isotonic and hypertonic solutions, and after insertion of microdialysis probe itself. In anesthetized rats, however, where basal NOS activity is low, intravenous infusion of hypertonic, but not isotonic solution, increased [(14)C]citrulline recovery without affecting cGMP. Thus, in the forebrain, neither NO produced basally nor during osmotic stimulation depends on cGMP to modulate plasma vasopressin and oxytocin secretion.
Collapse
Affiliation(s)
- Mary Lee Terrell
- Department of Surgery, Division of Neurosurgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-0517, USA
| | | | | | | | | |
Collapse
|
24
|
Stern JE. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:197-215. [PMID: 14769436 DOI: 10.1016/j.pbiomolbio.2003.11.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulated evidence indicates that nitric oxide (NO) plays a pivotal role in the central control of bodily homeostasis, including cardiovascular and fluid balance regulation. Two major neuronal substrates mediating NO actions in the control of homeostasis are the paraventricular nucleus (PVN) of the hypothalamus, considered a key center for the integration of neuroendocrine and autonomic functions, and the supraoptic nucleus (SON). In this work, a comprehensive review of NO modulatory actions within the SON/PVN, including NO actions on neuroendocrine and autonomic outputs, as well as the cellular mechanisms underlying these effects is provided. Furthermore, this review comprises recent progress from our laboratory that adds to our current understanding of the cellular sources, targets and mechanisms underlying NO actions within neuroendocrine and autonomic hypothalamic neuronal circuits. By combining in vitro patch clamp recordings, tract-tracing neuroanatomy, immunohistochemistry and live imaging techniques, we started to shed light into the cellular sources and signals driving NO production within the SON and PVN, as well as NO actions and mechanisms targeting discrete neuronal populations within these circuits. Based on this new information, we have expanded one of the current working models in the field, highlighting a key role for NO as a signaling molecule that facilitates crosstalk among various cell types and systems. We propose that this dynamic NO signaling mechanisms may constitute a neuroanatomical and functional substrate underlying the ability of the SON and PVN to coordinate complex neuroendocrine and autonomic output patterns.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Pharmacology and Toxicology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| |
Collapse
|
25
|
Spina MG, Langnaese K, Orlando GF, Horn TFW, Rivier J, Vale WW, Wolf G, Engelmann M. Colocalization of urocortin and neuronal nitric oxide synthase in the hypothalamus and Edinger-Westphal nucleus of the rat. J Comp Neurol 2004; 479:271-86. [PMID: 15457505 DOI: 10.1002/cne.20318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different lines of studies suggest that both the corticotropin-releasing hormone-related peptide Urocortin I (Ucn) and the neuromodulator nitric oxide (NO) are involved in the regulation of the complex mechanisms controlling feeding and anxiety-related behaviors. The aim of the present study was to investigate the possible interaction between Ucn and NO in the hypothalamic paraventricular nucleus (PVN), an area known to be involved in the modulation of these particular behaviors. Therefore, we mapped local mRNA and peptide/protein presence of both Ucn and the NO producing neuronal NO synthase (nNOS). This investigation was extended to include the hypothalamic supraoptic nucleus (SON) and the Edinger-Westphal nucleus area (EW), the latter being one of the major cellular Ucn-expressing sites. Furthermore, we compared the two predominantly used laboratory rat strains, Wistar and Sprague-Dawley. Ucn mRNA and immunoreactivity were detected in the SON and in the EW. A significant difference between Wistar and Sprague-Dawley rats was found in mRNA levels in the EW. nNOS was detected in all brain areas analyzed, showing a significantly lower immunoreactivity in the PVN and EW of Sprague-Dawley versus Wistar rats. Contrary to some previous reports, no Ucn mRNA and only a very low immunoreactivity were detectable in the PVN of either rat strain. Interestingly, double-labeling immunofluorescence revealed that in the SON approximately 75% of all cells immunoreactive for Ucn were colocalized with nNOS, whereas in the EW only approximately 2% of the Ucn neurons were found to contain nNOS. These findings suggest an interaction between Ucn and NO signaling within the SON, rather than the PVN, that may modulate the regulation of feeding, reproduction, and anxiety-related behaviors.
Collapse
Affiliation(s)
- Mariarosa G Spina
- Institute of Medical Neurobiology, Otto von Guericke University, Magdeburg D-39120, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Engelmann M, Wolf G, Putzke J, Bloom FE, Raber J, Landgraf R, Spina MG, Horn TFW. Nitric oxide is not involved in the control of vasopressin release during acute forced swimming in rats. Amino Acids 2003; 26:37-43. [PMID: 14752614 DOI: 10.1007/s00726-003-0040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Popeski N, Amir S, Diorio J, Woodside B. Prolactin and oxytocin interaction in the paraventricular and supraoptic nuclei: effects on oxytocin mRNA and nitric oxide synthase. J Neuroendocrinol 2003; 15:687-96. [PMID: 12787053 DOI: 10.1046/j.1365-2826.2003.01048.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the contribution of prolactin and oxytocin to the increase in staining for NADPH-d and oxytocin mRNA in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) observed at the end of pregnancy, or following a steroid-priming regimen that mimics the hormonal profile of late pregnant females. Ovariectomized rats received chronic implants of silastic capsules containing oestrogen and progesterone followed by progesterone removal. In experiment 1, oxytocin antagonist (OTA) was administered to rats to investigate whether intranuclear oxytocin release was necessary for NADPH-d staining. In experiments 2a and b, rats received concurrent treatment with bromocryptine (0.5 mg/day) to suppress endogenous prolactin release, and either systemic prolactin (0.5 mg once daily), or prolactin (2 micro g/ micro l), or vehicle infused twice a day into the third ventricle, or chronic oxytocin infusion (24 ng/day) for 3 days following progesterone removal. Brains were then processed for NADPH-d histochemistry. In experiment 3, the interaction of prolactin and oxytocin on oxytocin mRNA within the SON and PVN was examined. NADPH-d staining in the SON and PVN was reduced by the highest dose of the OTA, and by bromocryptine treatment. Central prolactin and oxytocin replacement completely restored NADPH-d staining in bromocryptine-treated rats. Finally, both bromocryptine and the OTA suppressed oxytocin mRNA expression and prolactin replacement restored expression levels to that of controls. Together, these data suggest that the increased capacity to produce nitric oxide in the SON and PVN during late pregnancy is dependent on prolactin stimulating oxytocin gene mRNA and hence intranuclear oxytocin release.
Collapse
Affiliation(s)
- N Popeski
- Center for Studies in Behavioral Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
28
|
Ventura RR, Gomes DA, Reis WL, Elias LLK, Castro M, Valença MM, Carnio EC, Rettori V, McCann SM, Antunes-Rodrigues J. Nitrergic modulation of vasopressin, oxytocin and atrial natriuretic peptide secretion in response to sodium intake and hypertonic blood volume expansion. Braz J Med Biol Res 2002; 35:1101-9. [PMID: 12219182 DOI: 10.1590/s0100-879x2002000900011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.
Collapse
Affiliation(s)
- R R Ventura
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Engelmann M, Wolf G, Horn TFW. Release patterns of excitatory and inhibitory amino acids within the hypothalamic supraoptic nucleus in response to direct nitric oxide administration during forced swimming in rats. Neurosci Lett 2002; 324:252-4. [PMID: 12009534 DOI: 10.1016/s0304-3940(02)00211-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of direct intrahypothalamic nitric oxide (NO) administration on the release of selected amino acids in the hypothalamic supraoptic nucleus (SON) with and without concomitant forced swimming was investigated. Adult male Wistar rats were chronically fitted with U-shaped microdialysis probes in the SON and forced to swim for 10-min in 20-degree C warm water. Thirty-min microdialysis samples were collected before, during and after the forced swimming period while NO was administered into the SON via microdialysis. The results show that NO administration in combination with forced swimming affects the release of aspartate, glutamate, taurine, and gamma aminobutyric acid (GABA) in different patterns. Whereas the release of the excitatory amino acids aspartate and glutamate was triggered only during NO administration and forced swimming, the inhibitory amino acids GABA and taurine were found in the extracellular fluid in increased concentrations also after the treatment. These data indicate that NO administration differently affects the release of excitatory and inhibitory amino acids within the SON. Thus, SON neurons which contain high concentrations of neuronal NO synthase, might contribute to the regulation of their own secretory activity by releasing NO that controls the orchestrated release of excitatory and inhibitory amino acids from axon terminals of afferences and interneurons as well as release from glial cells.
Collapse
Affiliation(s)
- Mario Engelmann
- Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Neurobiologie, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
30
|
Sharma R, Kodavanti PRS. In vitro effects of polychlorinated biphenyls and hydroxy metabolites on nitric oxide synthases in rat brain. Toxicol Appl Pharmacol 2002; 178:127-36. [PMID: 11858728 DOI: 10.1006/taap.2001.9328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide synthases (NOS) play a key role in motor activity in the cerebellum, hormonal regulation in the hypothalamus, and long-term potentiation (LTP), learning, and memory processes in the hippocampus. Developmental exposure to polychlorinated biphenyls (PCBs) has been shown to affect psychomotor functions, learning and memory processes, and to inhibit LTP. We hypothesized that PCBs may disrupt the regulation of such neurological functions by altering NOSs. We have studied the in vitro effects of several PCB congeners and some hydroxy PCBs on NOS activity in cytosolic (presumably neuronal NOS [nNOS]) and membrane (presumably endothelial NOS [eNOS]) fractions in different brain regions of young and adult rats. Among the two selected dichloro PCBs, the ortho-PCB, 2,2'-dichlorobiphenyl (DCB), inhibited both cytosolic and membrane NOS activity at low micromolar concentrations (3-10 microM) in the selected brain regions of all age groups while the non-ortho-PCB, 4,4'-DCB, did not. 2,2'-DCB inhibited cytosolic NOS to a greater extent than membrane NOS. Pentachloro-PCBs (PeCBs) and hexachloro-PCBs (HCBs) did not have a significant effect on adult cerebellar cytosolic or membrane NOS. However, mono- and dihydroxy derivatives of HCBs significantly decreased cytosolic NOS (IC50s: 16.33 +/- 0.47 and 33.65 +/- 4.33 microM, respectively) but resulted in a marginal effect on membrane NOS in the cerebellum. Among three adult rat brain regions, the hypothalamic cytosolic NOS was the most sensitive to 2,2'-DCB. Also, cytosolic NOS in the cerebellum and hypothalamus of young rats was less sensitive than in the older rats. In summary, these results indicate that only di-ortho-PCB inhibited both NOS and hydroxy substitution of one or more chlorine molecules significantly increased the potency of both ortho- and non-ortho-HCBs. The selective sensitivity of NOS to dichloro- ortho-PCB and hydroxy metabolites suggests that the inhibition of NOS could play a role in the neuroendocrine effects as well as learning and memory deficits caused by exposure to PCBs.
Collapse
Affiliation(s)
- Rashmi Sharma
- National Research Council, National Academy of Sciences, Washington, DC, USA
| | | |
Collapse
|
31
|
Luo Y, Kaur C, Ling EA. Neuronal and glial response in the rat hypothalamus-neurohypophysis complex with streptozotocin-induced diabetes. Brain Res 2002; 925:42-54. [PMID: 11755899 DOI: 10.1016/s0006-8993(01)03258-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was aimed to examine the neuronal and glial response in the hypothalamus and neurohypophysis of rats with streptozotocin-induced diabetes. At various time intervals after induction of diabetes the neurons in the paraventricular- (PVN) and supraoptic- (SON) nucleus showed upregulated arginine vasopressin (AVP) and oxytocin (OXT) immunoexpression, being most pronounced at 2 weeks. Concomitant to this was the hypertrophy of PVN and SON neurons. NMDAR1, which was constitutively and moderately expressed in normal rats, was markedly augmented, being most intense at 4 months. This coincided with the expression of neuronal nitric oxide synthase (nNOS). Contrary to this, the expression of GluR2/3 was progressively downregulated, so that it was hardly detected at 4 months. Both astrocytes and microglia marked by anti-GFAP and OX-42, respectively, appeared activated. In pars nervosa, the projection target of the axon terminals of PVN and SON neurons, massive axons and terminals (Herring bodies) laden with neurosecretions were observed in diabetic rats. Colocalization study showed that the neurosecretions were internalized by activated pituicytes and microglia associated with the axons. The present results suggest that the neurosecretion of PVN and SON neurons is enhanced in diabetes. This is coupled by upregulation of NMDAR1 and nNOS but downregulation of GluR2/3. It is speculated that the glutamate receptors and NO are linked to overactivation of PVN and SON neurons leading ultimately to cell death of some of them. The pituicytes and microglia in pars nervosa would help to modulate the release of neurosecretion.
Collapse
Affiliation(s)
- Yue Luo
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD 10, 4 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
32
|
Abstract
The magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) express multiple kinds of genes, including not only the classical hormones arginine vasopressin (AVP) and oxytocin (OXT), but also other physiologically active substances including neuropeptides, their receptors, and nitric oxide (NO) synthase, the rate-limiting enzyme in the synthesis of NO under physiological condition. For example, osmotic stimuli such as dehydration and chronic salt loading cause a wide range of changes of the expression levels of the genes and marked induction of the expression of the genes in the SON. The expression of the NO synthase gene in the SON under physiological conditions is reviewed.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
33
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
34
|
Abstract
The gaseous molecule nitric oxide (NO) plays an important role in cardiovascular homeostasis. It plays this role by its action on both the central and peripheral autonomic nervous systems. In this review, the central role of NO in the regulation of sympathetic outflow and subsequent cardiovascular control is examined. After a brief introduction concerning the location of NO synthase (NOS) containing neurons in the central nervous system (CNS), studies that demonstrate the central effect of NO by systemic administration of NO modulators will be presented. The central effects of NO as assessed by intracerebroventricular, intracisternal, or direct injection within the specific central areas is also discussed. Our studies demonstrating specific medullary and hypothalamic sites involved in sympathetic outflow are summarized. The review will be concluded with a discussion of the role of central NO mechanisms in the altered sympathetic outflow in disease states such as hypertension and heart failure.
Collapse
Affiliation(s)
- K P Patel
- Department of Physiology and Biophysics, University of Nebraska Medical Center, 984575 Nebraska Medical Center, Omaha, NE 68198-4545, USA.
| | | | | |
Collapse
|
35
|
Popeski N, Woodside B. Effect of nitric oxide synthase inhibition on fos expression in the hypothalamus of female rats following central oxytocin and systemic urethane administration. J Neuroendocrinol 2001; 13:596-607. [PMID: 11442774 DOI: 10.1046/j.1365-2826.2001.00673.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three experiments were carried out to investigate the pattern of neuronal activation induced by central oxytocin administration and its modulation by nitric oxide (NO). First, we compared the induction of Fos-like immunoreactivity (lir) in the supraoptic (SON) and paraventricular (PVN) nuclei and medial preoptic area (MPOA) after central oxytocin administration between nonlactating and lactating rats. Next, we investigated whether NO modulated Fos induction following central oxytocin administration using a nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester (L-NAME). Finally, to determine whether the effects of NOS inhibition on Fos induction would generalize to stimuli other than oxytocin, we compared Fos-lir in the SON and PVN of lactating and nonlactating rats following L-NAME and urethane administration. In the first two experiments, oxytocin (50 ng in 2 microl) or vehicle was administered into the third ventricle. L-NAME (50 mg/kg) was given by an intraperitoneal (i.p.) injection 30 min before oxytocin administration (experiment 2) or an i.p. injection of urethane (1.4 g/kg) (experiment 3). In all experiments, lactating rats were tested on day 12 or 13 postpartum and nonlactating females at least 11 days after surgery or the start of the experiment. Central oxytocin infusion induced Fos expression in the SON and PVN in lactating and nonlactating rats and in the MPOA and bed nucleus of the stria terminalis in lactating rats. Overall, lactating rats that received L-NAME and oxytocin had a greater number of cells showing Fos-lir in both the SON and PVN. Conversely, L-NAME administration reduced Fos-lir in the SON and PVN in oxytocin-stimulated nonlactating rats. In urethane-treated rats, L-NAME administration did not change Fos-lir in lactating rats but reduced Fos-lir in nonlactating rats. These data suggest that the role of NO in modulating the activity of neurones in discrete nuclei in the hypothalamus varies across reproductive state and with the stimulus presented.
Collapse
Affiliation(s)
- N Popeski
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
36
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Summy-Long JY, Kadekaro M. Role of circumventricular organs (CVO) in neuroendocrine responses: interactions of CVO and the magnocellular neuroendocrine system in different reproductive states. Clin Exp Pharmacol Physiol 2001; 28:590-601. [PMID: 11458887 DOI: 10.1046/j.1440-1681.2001.03491.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J Y Summy-Long
- Department of Pharmacology, The Pennsylvania State University, College of Medicine, The Penn State Geisinger Health System, Hershey, PA 17033, USA.
| | | |
Collapse
|
38
|
Kurose T, Ueta Y, Nomura M, Yamaguchi K, Nagata S. Nociceptive stimulation increases NO synthase mRNA and vasopressin heteronuclearRNA in the rat paraventricular nucleus. Auton Neurosci 2001; 88:52-60. [PMID: 11474546 DOI: 10.1016/s1566-0702(01)00235-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nociceptive stimulation causes neuroendocrine responses such as arginine vasopressin (AVP) release and activation of the hypothalamo-pituitary-adrenal (HPA) axis. We examined the effects of nociceptive stimulation on the expression levels of neuronal nitric oxide synthase (nNOS) mRNA, heteronuclear (hn)RNA for AVP and AVP mRNA in the rat paraventricular nucleus (PVN) and supraoptic nucleus (SON), using in situ hybridization histochemistry. For nociceptive stimulation, formalin (5%) or saline was injected subcutaneously (s.c.) into the bilateral hind paws of rats. The expression of the nNOS gene in the PVN was significantly increased 2 and 6 h after s.c. injection of formalin in comparison with that in untreated and saline injected rats. The expression of the nNOS gene in the SON did not change in the untreated, saline- and formalin-injected rats. The AVP hnRNA in the PVN and SON was also significantly increased 15, 30 min and 2 h after s.c. injection of formalin, though AVP mRNA did not change at any time points that we studied. Plasma concentration of AVP was significantly increased 15 min after s.c. injection of formalin. These results suggest that NO in the PVN may be involved in nociceptive stimulation-induced neuroendocrine responses.
Collapse
Affiliation(s)
- T Kurose
- Department of Mental Health, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
39
|
Navarra P, Vairano M, Costa A, Grossman A. The roles of carbon monoxide and nitric oxide in the control of the neuroendocrine stress response: complementary or redundant. Stress 2001; 4:3-11. [PMID: 22432123 DOI: 10.3109/10253890109001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is widespread evidence in favour of nitric oxide (NO) acting as a gaseous neurotransmitter in the central nervous system, diffusing from its cells of origin and affecting surrounding neuronal tissue in evanescent three-dimensional waves. This is also true of the hypothalamus, where amongst other activities NO inhibits stimulation of corticotrophin-releasing hormone (CRH) and vasopressin release by inflammatory stressors, effects thought to be mediated by binding with soluble guanylate cyclase (sGC). Carbon monoxide is being increasingly recognised as another gaseous neuromodulator, but with principal effects on other hemoproteins such as cyclo-oxygenase, and a distinctly different profile of localisation.NO is predominantly a pro-inflammatory agent in the periphery while CO is often anti-inflammatory. In the hypothalamus, the actions of CO are also distinct from those of NO,with marked antagonistic effects on the inflammatory release of vasopressin, both in vitro and in vivo, but with little involvement in the regulation of CRH. Thus, it would appear that these apparently similar gases exert quite distinct and separate effects, although they cause broadly similar overall changes in the secretion of neuroendocrine stress hormones. We conclude that these two gases may play significant but different roles in the control of the neuroendocrine stress response, but one common feature may be attenuation of inflammation-induced release of stress hormones.
Collapse
Affiliation(s)
- P Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| | | | | | | |
Collapse
|
40
|
Anai H, Ueta Y, Serino R, Nomura M, Nakashima Y, Yamashita H. Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats. Psychoneuroendocrinology 2001; 26:109-20. [PMID: 11087959 DOI: 10.1016/s0306-4530(00)00030-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.
Collapse
Affiliation(s)
- H Anai
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
De Laurentiis A, Pisera D, Duvilanski B, Rettori V, Lasaga M, Seilicovich A. Neurokinin A inhibits oxytocin and GABA release from the posterior pituitary by stimulating nitric oxide synthase. Brain Res Bull 2000; 53:325-30. [PMID: 11113587 DOI: 10.1016/s0361-9230(00)00356-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurokinin A (NKA) is a tachykinin that participates in the control of neuroendocrine functions. The posterior pituitary lobe (PP) contains abundant nitric oxide synthase (NOS), suggesting that nitric oxide (NO) may play a role in controlling the release of neuropeptides and neurotransmitters. In the present project, we investigated the in vitro effect of NKA on oxytocin release from hypothalamic explants and PP of male rats and the possible involvement of NO in the action of NKA. Since NKA inhibits gamma-aminobutyric acid (GABA) release from PP, we also examined the role of NO in the effect of NKA on basal and K(+)-evoked GABA release. NKA (10(-7)-10(-5) M) significantly decreased oxytocin release from PP, whereas it did not affect its release from hypothalamic explants. The inhibitory effect of NKA on oxytocin release from PP was completely blocked by the NOS inhibitors N(G)-monomethyl-L-arginine (L-NMMA, 0.5 mM) or N(G)-nitro-L-arginine-methyl-ester (L-NAME, 1 mM). Sodium nitroprusside (0.5 mM), an NO releaser, had no effect on basal GABA release but significantly decreased K(+)-evoked GABA release. L-NMMA (0.3 mM) and L-NAME (0.5 mM) increased K(+)-evoked GABA release, indicating that NO plays an inhibitory role in GABA release from PP. The inhibition in both basal and K(+)-evoked GABA release induced by NKA (10(-7) M) was reduced by L-NAME (1 mM). Also, NKA (10(-7) M) increased NO synthesis as measured by [(14)C] citrulline production. Considered all together, our data indicate that NO may mediate the inhibitory effect of NKA on the release of both oxytocin and GABA from PP.
Collapse
Affiliation(s)
- A De Laurentiis
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Otukonyong EE, Okere CO, Johnstone LE, Murata T, Kaba H, Higuchi T. Effect of suckling on NADPH-diaphorase (Nitric oxide synthase, NOS) reactivity and NOS gene expression in the paraventricular and supraoptic nuclei of lactating rats. J Neuroendocrinol 2000; 12:1001-8. [PMID: 11012841 DOI: 10.1046/j.1365-2826.2000.00548.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examined the effect of suckling on nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d, a histochemical marker for nitric oxide synthase, NOS) reactivity and neuronal NOS mRNA expression in the paraventricular (PVN) and supraoptic (SON) nuclei of lactating rats. Freely nursing (non-separated) dams and those separated from pups for 12 h and then reunited for 0, 15, 30, 60, 90, 120 and 180 min were used for the study. Dams separated from pups and sacrificed at time zero (without reunion) showed a significant decrease in NADPH-d staining and NADPH-d positive cells as well as in the NOS mRNA expression in the PVN and SON compared to that observed in non-separated dams. Reunion with pups and restoration of suckling significantly increased NADPH-d reactivity after 15, 30, 60 min, but not after 90, 120 and 180 min compared to non-reunited pups-deprived dams. A pattern of NADPH-d reactivity and neuronal NOS mRNA expression indistinguishable from that observed during free lactation was reinstated shortly (15 min) after the restoration of suckling stimulus, suggesting that the NADPH-d reactivity in lactation depends on the presence of the suckling stimulus. These results show that suckling stimulus may play a modulatory role in the regulation of NOS reactivity in the magnocellular neurones of the hypothalamic PVN and SON during lactation.
Collapse
Affiliation(s)
- E E Otukonyong
- Department of Physiology, Kochi Medical School, Nankoku, Kochi, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Okere CO, Kaba H, Higuchi T. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin. J Comp Neurol 2000; 423:670-86. [PMID: 10880996 DOI: 10.1002/1096-9861(20000807)423:4<670::aid-cne11>3.0.co;2-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although capsaicin has been shown to activate certain neuronal groups in the hypothalamus and amygdala, the neurotransmitters involved and the exact mechanism of action are not clearly understood at present. The aim of this study was to examine the hypothesis that the effect of capsaicin in the rat hypothalamus and amygdala primarily involves direct activation of the endogenous nitric oxide synthase (NOS) neurons responsible for the synthesis of nitric oxide (NO). Subcutaneous capsaicin injection in male rats, compared with vehicle, caused a significant increase in Fos expression in the paraventricular nucleus (PVN), supraoptic nucleus (SON), and medial and cortical amygdala. The expression of nicotinamide adenine dinucleotide phosphate diaphorase, a histochemical marker for NOS, was also increased in these brain areas in addition to the periventricular and lateral hypothalamic area and central amygdaloid nucleus. Also, capsaicin significantly increased the expression of neuronal NOS messenger RNA and protein in the PVN, SON, and medial amygdala as demonstrated by in situ hybridization and immunohistochemistry, respectively. A higher proportion of the NOS neurons in the PVN, periventricular region, SON and amygdala showed Fos expression in response to capsaicin than vehicle injection. There was little, if any, Fos activation in the NOS-positive neurons in the lateral hypothalamic area. The capsaicin-induced activation of the hypothalamic PVN and SON neurons and the medial amygdaloid nucleus was attenuated in the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) -pretreated animals in comparison with the inactive enantiomer D-NAME. These observations indicate that activation of the endogenous NOS system and production of NO constitute a major pathway through which capsaicin exerts its effect within the hypothalamus and amygdala.
Collapse
Affiliation(s)
- C O Okere
- Department of Physiology, Kochi Medical School, Okoh-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | |
Collapse
|
45
|
Li Z, Hatton GI. Histamine suppresses non-NMDA excitatory synaptic currents in rat supraoptic nucleus neurons. J Neurophysiol 2000; 83:2616-25. [PMID: 10805662 DOI: 10.1152/jn.2000.83.5.2616] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were obtained from supraoptic neurons to investigate the effects of histamine on excitatory postsynaptic currents evoked by electrical stimulation of areas around the posterior supraoptic nucleus. When cells were voltage-clamped at -70 mV, evoked excitatory postsynaptic currents had amplitudes of 88.4 +/- 9.6 pA and durations of 41.1 +/- 3.0 ms (mean +/- SE; n = 43). With twin stimulus pulses (20 Hz) used, paired-pulse facilitation ratios were 1.93 +/- 0.12. Bath application of 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) abolished synaptic currents. Histamine at concentrations approximately 0.1-10 microM reversibly suppressed excitatory postsynaptic currents in all supraoptic neurons tested. Within 2 min after application of (10 microM) histamine, current amplitudes and durations decreased by 61. 5 and 31.0%, respectively, with little change in the paired-pulse facilitation ratio. Dimaprit or imetit (H(2) or H(3) receptor agonists) did not reduce synaptic currents, whereas pyrilamine (H(1) receptor antagonist) blocked histamine-induced suppression of synaptic currents. When patch electrodes containing guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) were used to record cells, histamine still suppressed current amplitudes by 49.1% and durations by 41.9%. Similarly, intracellular diffusion of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) and H(7) did not abolish histamine-induced suppression of synaptic currents, either. Bath perifusion of 8-bromo-quanosine 3',5'-cyclic monophosphate reduced current amplitudes by 32.3% and durations by 27.9%. After bath perfusion of slices with N(omega)-nitro-L-arginine methyl ester (L-NAME), histamine injection decreased current amplitudes only by 31.9%, much less than the inhibition rate in control (P < 0.01). In addition, histamine induced little change in current durations and paired-pulse facilitation ratios, representing a partial blockade of histamine effects on synaptic currents by L-NAME. In supraoptic neurons recorded using electrodes containing BAPTA and perifused with L-NAME, the effects of histamine on synaptic currents were completely abolished. Norepinephrine injection reversibly decreased current amplitudes by 39.1% and duration by 64.5%, with a drop in the paired-pulse facilitation ratio of 47.9%. Bath perifusion of L-NAME, as well as intracellular diffusion of GDP-beta-S, 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine, or BAPTA, failed to block norepinephrine-induced suppression of evoked synaptic currents. The present results suggest that histamine suppresses non-N-methyl-D-aspartate synaptic currents in supraoptic neurons through activation of H(1) receptors. It is possible that histamine first acts at supraoptic cells (perhaps both neuronal and nonneuronal) and induces the production of nitric oxide, which then diffuses to nearby neurons and modulates synaptic transmission by a postsynaptic mechanism.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
46
|
Ozaki M, Shibuya I, Kabashima N, Isse T, Noguchi J, Ueta Y, Inoue Y, Shigematsu A, Yamashita H. Preferential potentiation by nitric oxide of spontaneous inhibitory postsynaptic currents in rat supraoptic neurones. J Neuroendocrinol 2000; 12:273-81. [PMID: 10718923 DOI: 10.1046/j.1365-2826.2000.00448.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnocellular neurones in the supraoptic nucleus and paraventricular nucleus express mRNA for nitric oxide synthase (NOS) and the expression becomes more prominent when the release of vasopressin or oxytocin is stimulated. It has also been reported that NO donors inhibit the electrical activity of supraoptic nucleus neurones, but the mechanism involved in the inhibition remains unclear. In the present study, to know whether modulation of synaptic inputs into supraoptic neurones is involved in the inhibitory effect of NO, we measured spontaneous excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) from rat supraoptic nucleus neurones in slice preparations identified under a microscope using the whole-cell mode of the slice-patch-clamp technique. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reversibly increased the frequency of spontaneous IPSCs mediated by GABAA receptors, without affecting the amplitude, indicating that NO potentiated IPSCs via a presynaptic mechanism. The NO scavenger, haemoglobin, suppressed the potentiation of IPSCs by SNAP. On the other hand, SNAP did not cause significant effects on EPSCs mediated by non-NMDA glutamate receptors. The membrane permeable analogue of cGMP, 8-bromo cGMP, caused a significant reduction in the frequency and amplitude of both IPSCs and EPSCs. The results suggest that NO preferentially potentiates the inhibitory synaptic inputs into supraoptic nucleus neurones by acting on GABA terminals in the supraoptic nucleus, possibly via a cGMP-independent mechanism. The potentiation may, at least in part, account for the inhibitory action of NO on the neural activity of supraoptic neurones.
Collapse
Affiliation(s)
- M Ozaki
- Department of Physiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Woodside B, Amir S. Chapter V Nitric oxide signaling in the hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 2000:147-176. [DOI: 10.1016/s0924-8196(00)80059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Saad WA, Camargo LA, Saad R, Pereira AF, Simões S. Effect of injection of L-NAME on drinking response. Braz J Med Biol Res 1999; 32:1413-6. [PMID: 10559843 DOI: 10.1590/s0100-879x1999001100012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The drinking behavior responses to centrally administered N G-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 microg/microl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 +/- 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 microg/microl into the SFO before injection of ANG II (12 ng/microl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 microg). The water intake obtained after 40 microg/microl L-NAME was 0.8 +/- 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 microg/microl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 +/- 0.8, 3.2 +/- 0.8 and 0.7 +/- 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Collapse
Affiliation(s)
- W A Saad
- Departamento de Fisiologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil.
| | | | | | | | | |
Collapse
|
49
|
Abstract
1. Nitric oxide (NO) has been shown to modulate neuropeptide secretion from the posterior pituitary. Here we show that NO activates large-conductance Ca2+-activated K+ (BK) channels in posterior pituitary nerve terminals. 2. NO, generated either by the photolysis of caged-NO or with chemical donors, irreversibly enhanced the component of whole-terminal K+ current due to BK channels and increased the activity of BK channels in excised patches. NO also inhibited the transient A-current. The time courses of these effects on K+ current were very different; activation of BK channels developed slowly over several minutes whereas inhibition of A-current immediately followed NO uncaging. 3. Activation of BK channels by NO occurred in the presence of guanylyl cyclase inhibitors and after removal of ATP or GTP from the pipette solution, suggesting a cGMP-independent signalling pathway. 4. The sulfhydryl alkylating agent N-ethyl maleimide (NEM) increased BK channel activity. Pretreatment with NEM occluded NO activation. 5. NO activation of BK channels occurred independently of voltage and cytoplasmic Ca2+ concentration. In addition, NO removed the strict Ca2+ requirement for channel activation, rendering channels highly active even at nanomolar Ca2+ levels. 6. These results suggest that NO, or a reactive nitrogen byproduct, chemically modifies nerve terminal BK channels or a closely associated protein and thereby produces an increase in channel activity. Such activation is likely to inhibit impulse activity in posterior pituitary nerve terminals and this may explain the inhibitory action of NO on secretion.
Collapse
Affiliation(s)
- G P Ahern
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Blottner D. Nitric oxide and target-organ control in the autonomic nervous system: Anatomical distribution, spatiotemporal signaling, and neuroeffector maintenance. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<139::aid-jnr14>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|