1
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron É, Keck JG, Zaki SR, Nichol ST, Spiropoulou CF. Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. J Infect Dis 2017; 216:1386-1397. [PMID: 28482001 PMCID: PMC5853341 DOI: 10.1093/infdis/jix215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - M Kelly Keating
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anita K McElroy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
- Division of Pediatric Infectious Diseases, Emory University, Atlanta, Georgia
| | - Marko Zivcec
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Éric Bergeron
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James G Keck
- In Vivo Services, The Jackson Laboratory, Sacramento, California
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
3
|
Lana D, Iovino L, Nosi D, Wenk GL, Giovannini MG. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats. Exp Gerontol 2016; 83:71-88. [PMID: 27466072 DOI: 10.1016/j.exger.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, OH, USA..
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
4
|
Kolokoltsova OA, Yun NE, Paessler S. Reactive astrogliosis in response to hemorrhagic fever virus: microarray profile of Junin virus-infected human astrocytes. Virol J 2014; 11:126. [PMID: 25015256 PMCID: PMC4113780 DOI: 10.1186/1743-422x-11-126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Arenavirus Junin is the causative agent of Argentine hemorrhagic fever. Limited information is available concerning the pathogenesis of this human disease, especially the pathogenesis of acute and late neurological symptoms. METHODS In our study we present for the first time cDNA microarray profile of human astrocytes infected with the virulent strain of Junin virus. Transcriptional profiling was confirmed by quantitative real-time RT-PCR and cytokine/chemokine/growth factor assay. RESULTS We demonstrated the impact of virus infection on immune/inflammatory response/interferon signaling and apoptosis. Pro-apoptotic response and amplification with time of pro-inflammatory cascade of human astrocytes suggested neurodegenerative dysfunctional reactive astrogliosis in response to Junin virus infection. CONCLUSION Our results suggest potential pathogenic role of astroglial cells in the development of neurological symptoms and late neurological syndrome during Argentine hemorrhagic fever.
Collapse
Affiliation(s)
| | | | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
5
|
Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, Wenk GL, Giovannini MG. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One 2012; 7:e45250. [PMID: 23028880 PMCID: PMC3445467 DOI: 10.1371/journal.pone.0045250] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1) increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.
Collapse
Affiliation(s)
- Francesca Cerbai
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Anatomy, Histology and Legal Medicine, University of Florence, Florence, Italy
| | | | - Sandra Zecchi
- Department of Anatomy, Histology and Legal Medicine, University of Florence, Florence, Italy
| | - Holly M. Brothers
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
6
|
Kolokoltsova OA, Yun NE, Poussard AL, Smith JK, Smith JN, Salazar M, Walker A, Tseng CTK, Aronson JF, Paessler S. Mice lacking alpha/beta and gamma interferon receptors are susceptible to junin virus infection. J Virol 2010; 84:13063-7. [PMID: 20926559 PMCID: PMC3004311 DOI: 10.1128/jvi.01389-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022] Open
Abstract
Junin virus (JUNV) causes a highly lethal human disease, Argentine hemorrhagic fever. Previous work has demonstrated the requirement for human transferrin receptor 1 for virus entry, and the absence of the receptor was proposed to be a major cause for the resistance of laboratory mice to JUNV infection. In this study, we present for the first time in vivo evidence that the disruption of interferon signaling is sufficient to generate a disease-susceptible mouse model for JUNV infection. After peripheral inoculation with virulent JUNV, adult mice lacking alpha/beta and gamma interferon receptors developed disseminated infection and severe disease.
Collapse
Affiliation(s)
- Olga A. Kolokoltsova
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Nadezda E. Yun
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Allison L. Poussard
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer K. Smith
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Jeanon N. Smith
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Milagros Salazar
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Aida Walker
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Chien-Te K. Tseng
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Judith F. Aronson
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Slobodan Paessler
- Galveston National Laboratory, Department of Pathology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
7
|
Pozner RG, Collado S, Jaquenod de Giusti C, Ure AE, Biedma ME, Romanowski V, Schattner M, Gómez RM. Astrocyte response to Junín virus infection. Neurosci Lett 2008; 445:31-5. [PMID: 18771707 DOI: 10.1016/j.neulet.2008.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/08/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
Abstract
In a previous study of experimental murine encephalitis induced by Junín virus (JV), an arenavirus, we showed increased expression of iNOS by unidentified cells, concomitant with the astrocyte reaction. The specific inhibition of iNOS was associated with greater mortality but lower astrocytosis, suggesting that the protective role of nitric oxide (NO) synthesized by iNOS was related to enhanced astrocyte activation, representing a beneficial cellular response to virus-induced central nervous system damage. In the present work, cultured astrocytes were used to study whether JV infection could trigger iNOS expression and assess its eventual relationship with viral replication, glial fibrilary acidic protein (GFAP) expression levels and the presence of apoptosis. We found that JV infection of astrocytes did not induce apoptosis but produced both increased iNOS synthesis, detected by immunocytochemistry and fluorescence activated cell sorting (FACS) analysis, and increased NO, which was indirectly measured by nitrite/nitrate levels. These changes occurred early relative to the increases in GFAP expression, as detected by immunocytochemistry, FACS analysis and RT-PCR. The fact that iNOS inhibition abolished enhanced GFAP expression in infected monolayers suggests that NO was directly involved. In addition, iNOS inhibition enhanced virus replication. Together with data from confocal microscopy, these results suggest that JV induces iNOS expression in infected astrocytes and that the resulting NO has an important role both in reducing viral replication and in enhancing subsequent astrocyte activation.
Collapse
Affiliation(s)
- Roberto G Pozner
- Thrombosis 1 Laboratory, Haematological Research Institute, National Academy of Medicine, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gómez RM, Yep A, Schattner M, Berría MI. Junin virus-induced astrocytosis is impaired by iNOS inhibition. J Med Virol 2003; 69:145-9. [PMID: 12436490 DOI: 10.1002/jmv.10254] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because Junin virus (JV) experimental encephalitis of mice and rats is characterized by mild histopathological changes that do not seem to justify per se lethality after intracerebral infection, such a murine model seems adequate to investigate the potential role of inducible nitric oxide synthase (iNOS) as a pathogenic factor. Concomitant with a predominant astrocyte reaction, increased immunoperoxidase expression of iNOS, mitochondrial superoxide dismutase (SODm) and glutathione peroxidase (GPX) was disclosed in brain of mice infected with JV strain #44. When specific inhibition of iNOS was achieved by intraperitoneal administration of amino guanidine (AG), significantly greater mortality was observed in treated animals (70% vs. 40%), together with similar infective titers ( approximately 10(7) PFU/g) but lower astrocytosis, as shown by glial fibrillary acidic (GFAP) labeling. As regards SODm and GPX immunochemical expression in neurons, no differences were found between mice with or without AG treatment. The present results suggest that the apparent protective role of nitric oxide (NO), when synthesized by iNOS, is unrelated to reduced viral replication but rather to enhanced astrocyte activation behaving as a beneficial cell response to virus-induced CNS damage.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|