1
|
Garczyńska K, Tzschätzsch H, Kühl AA, Morr AS, Lilaj L, Häckel A, Schellenberger E, Berndt N, Holzhütter HG, Braun J, Sack I, Guo J. Changes in Liver Mechanical Properties and Water Diffusivity During Normal Pregnancy Are Driven by Cellular Hypertrophy. Front Physiol 2020; 11:605205. [PMID: 33329058 PMCID: PMC7719759 DOI: 10.3389/fphys.2020.605205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
During pregnancy, the body’s hyperestrogenic state alters hepatic metabolism and synthesis. While biochemical changes related to liver function during normal pregnancy are well understood, pregnancy-associated alterations in biophysical properties of the liver remain elusive. In this study, we investigated 26 ex vivo fresh liver specimens harvested from pregnant and non-pregnant rats by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) in a 0.5-Tesla compact magnetic resonance imaging (MRI) scanner. Water diffusivity and viscoelastic parameters were compared with histological data and blood markers. We found livers from pregnant rats to have (i) significantly enlarged hepatocytes (26 ± 15%, p < 0.001), (ii) increased liver stiffness (12 ± 15%, p = 0.012), (iii) decreased viscosity (−23 ± 14%, p < 0.001), and (iv) increased water diffusivity (12 ± 11%, p < 0.001). In conclusion, increased stiffness and reduced viscosity of the liver during pregnancy are mainly attributable to hepatocyte enlargement. Hypertrophy of liver cells imposes fewer restrictions on intracellular water mobility, resulting in a higher hepatic water diffusion coefficient. Collectively, MRE and DWI have the potential to inform on structural liver changes associated with pregnancy in a clinical context.
Collapse
Affiliation(s)
- Karolina Garczyńska
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin Core Unit, Charitá - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ledia Lilaj
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Akvile Häckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nikolaus Berndt
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Computational Systems Biochemistry Group, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Computational Systems Biochemistry Group, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Maekawa H, Yamana K. Alkaline phosphatase isozymes of Xenopus laevis embryos and tissues. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1975; 192:155-64. [PMID: 237058 DOI: 10.1002/jez.1401920205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase was obtained by treating embryos of Xenopus laevis with n-butanol at different developmental stages from gastrula to tadpole; the enzyme was also obtained from adult kidney, liver, and intestinal mucosa. Purification was carried out by gel filtration and polyacrylamide gel electrophoresis. The enzyme activity is chromatographically spearated into two peaks, with molecular weights of approximately 200,000 and 400,000. Alternatively, two groups may be characterized on the basis of their electrophoretic mobilities, which correspond to the different molecular weight classes. Effects of pH, temperature, inhibitors, and substrate concentration were studied. The kinetic and physical properties of the two alkaline phosphatase isozymes are similar, and are comparable to the properties reported for this enzyme from other vertebrates. Alkaline phosphatase activity increased sharply at the gastrula stage and reached a plateau at the late tailbud stage. During this period there was an 18-fold increase in activity.
Collapse
|