1
|
Hanft LM, Cornell TD, McDonald CA, Rovetto MJ, Emter CA, McDonald KS. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function. Arch Biochem Biophys 2016; 601:22-31. [PMID: 26854722 DOI: 10.1016/j.abb.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA-induced phosphorylation of cMyBP-C and cTnI may contribute to ventricular pump failure.
Collapse
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Timothy D Cornell
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Colin A McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Michael J Rovetto
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA
| | - Craig A Emter
- Department of Biomedical Sciences, College of Veterinary Medicine University of Missouri, Columbia, MO 65211, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
2
|
Hanft LM, Biesiadecki BJ, McDonald KS. Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 2013; 591:4535-47. [PMID: 23836688 PMCID: PMC3784197 DOI: 10.1113/jphysiol.2013.258400] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/02/2013] [Indexed: 01/24/2023] Open
Abstract
According to the Frank-Starling relationship, greater end-diastolic volume increases ventricular output. The Frank-Starling relationship is based, in part, on the length-tension relationship in cardiac myocytes. Recently, we identified a dichotomy in the steepness of length-tension relationships in mammalian cardiac myocytes that was dependent upon protein kinase A (PKA)-induced myofibrillar phosphorylation. Because PKA has multiple myofibrillar substrates including titin, myosin-binding protein-C and cardiac troponin I (cTnI), we sought to define if phosphorylation of one of these molecules could control length-tension relationships. We focused on cTnI as troponin can be exchanged in permeabilized striated muscle cell preparations, and tested the hypothesis that phosphorylation of cTnI modulates length dependence of force generation. For these experiments, we exchanged unphosphorylated recombinant cTn into either a rat cardiac myocyte preparation or a skinned slow-twitch skeletal muscle fibre. In all cases unphosphorylated cTn yielded a shallow length-tension relationship, which was shifted to a steep relationship after PKA treatment. Furthermore, exchange with cTn having cTnI serines 23/24 mutated to aspartic acids to mimic phosphorylation always shifted a shallow length-tension relationship to a steep relationship. Overall, these results indicate that phosphorylation of cTnI serines 23/24 is a key regulator of length dependence of force generation in striated muscle.
Collapse
Affiliation(s)
- Laurin M Hanft
- K. S. McDonald: Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
3
|
Hanft LM, McDonald KS. Sarcomere length dependence of power output is increased after PKA treatment in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2009; 296:H1524-31. [PMID: 19252095 DOI: 10.1152/ajpheart.00864.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Frank-Starling relationship of the heart yields increased stroke volume with greater end-diastolic volume, and this relationship is steeper after beta-adrenergic stimulation. The underlying basis for the Frank-Starling mechanism involves length-dependent changes in both Ca(2+) sensitivity of myofibrillar force and power output. In this study, we tested the hypothesis that PKA-induced phosphorylation of myofibrillar proteins would increase the length dependence of myofibrillar power output, which would provide a myofibrillar basis to, in part, explain the steeper Frank-Starling relations after beta-adrenergic stimulation. For these experiments, adult rat left ventricles were mechanically disrupted, permeabilized cardiac myocyte preparations were attached between a force transducer and position motor, and the length dependence of loaded shortening and power output were measured before and after treatment with PKA. PKA increased the phosphorylation of myosin binding protein C and cardiac troponin I, as assessed by autoradiography. In terms of myocyte mechanics, PKA decreased the Ca(2+) sensitivity of force and increased loaded shortening and power output at all relative loads when the myocyte preparations were at long sarcomere length ( approximately 2.30 mum). PKA had less of an effect on loaded shortening and power output at short sarcomere length ( approximately 2.0 mum). These changes resulted in a greater length dependence of myocyte power output after PKA treatment; peak normalized power output increased approximately 20% with length before PKA and approximately 40% after PKA. These results suggest that PKA-induced phosphorylation of myofibrillar proteins explains, in part, the steeper ventricular function curves (i.e., Frank-Starling relationship) after beta-adrenergic stimulation of the left ventricle.
Collapse
Affiliation(s)
- Laurin M Hanft
- Dept. of Physiology, School of Medicine, Univ. of Missouri, Columbia, MO, USA
| | | |
Collapse
|
4
|
Baryshnikova OK, Li MX, Sykes BD. Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies. J Mol Biol 2007; 375:735-51. [PMID: 18042489 DOI: 10.1016/j.jmb.2007.10.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/12/2007] [Accepted: 10/23/2007] [Indexed: 11/29/2022]
Abstract
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca(2+) affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI(147-163) but not toward Ca(2+). The K(d) of cNTnC for cTnI(147-163) was found to be 600 microM in the presence of cTnI(1-29) and 370 microM in the presence of cTn1(1-29)PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca(2+) affinity per se and in complex with the cTnI N-terminus (cTnI(1-29) and cTnI(1-29)PP). The affinity of L29Q and E59D/D75Y toward cTnI(147-163) was significantly perturbed, both alone and in complex with cTnI(1-29) and cTnI(1-29)PP, which is likely to be responsible for the development of malfunctions.
Collapse
Affiliation(s)
- Olga K Baryshnikova
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
5
|
Bilchick KC, Duncan JG, Ravi R, Takimoto E, Champion HC, Gao WD, Stull LB, Kass DA, Murphy AM. Heart failure-associated alterations in troponin I phosphorylation impair ventricular relaxation-afterload and force-frequency responses and systolic function. Am J Physiol Heart Circ Physiol 2007; 292:H318-25. [PMID: 16936010 DOI: 10.1152/ajpheart.00283.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have found that selective stimulation of troponin (Tn)I protein kinase A (PKA) phosphorylation enhances heart rate-dependent inotropy and blunts relaxation delay coupled to increased afterload. However, in failing hearts, TnI phosphorylation by PKA declines while protein kinase C (PKC) activity is enhanced, potentially augmenting TnI PKC phosphorylation. Accordingly, we hypothesized that these site-specific changes deleteriously affect both rate-responsive cardiac function and afterload dependence of relaxation, both prominent phenotypic features of the failing heart. A transgenic (TG) mouse model was generated in which PKA-TnI sites were mutated to mimic partial dephosphorylation (Ser22 to Ala; Ser23 to Asp) and dominant PKC sites were mutated to mimic constitutive phosphorylation (Ser42 and Ser44 to Asp). The two highest-expressing lines were further characterized. TG mice had reduced fractional shortening of 34.7 ± 1.4% vs. 41.3 ± 2.0% ( P = 0.018) and slight chamber dilation on echocardiography. In vivo cardiac pressure-volume studies revealed near doubling of isovolumic relaxation prolongation with increasing afterload in TG animals ( P < 0.001), and this remained elevated despite isoproterenol infusion (PKA stimulation). Increasing heart rate from 400 to 700 beats/min elevated contractility 13% in TG hearts, nearly half the response observed in nontransgenic animals ( P = 0.005). This blunted frequency response was normalized by isoproterenol infusion. Abnormal TnI phosphorylation observed in cardiac failure may explain exacerbated relaxation delay in response to increased afterload and contribute to blunted chronotropic reserve.
Collapse
Affiliation(s)
- Kenneth C Bilchick
- Dept. of Pediatrics, Johns Hopkins Univ. School of Medicine, 720 Rutland Ave., Ross Bldg. 1144, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M. The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 2006; 456:204-15. [PMID: 16934740 DOI: 10.1016/j.abb.2006.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Targeting of protein kinase A (PKA) by A-kinase anchoring proteins (AKAPs) contributes to high specificity of PKA signaling pathways. PKA phosphorylation of myofilament and cytoskeletal proteins may regulate myofibrillogenesis and myocyte remodeling during heart disease; however, known cardiac AKAPs do not localize to these regions. To identify novel AKAPs which target PKA to the cytoskeleton or myofilaments, a human heart cDNA library was screened and the intermediate filament (IF) protein, synemin, was identified as a putative RII (PKA regulatory subunit type II) binding protein. A predicted RII binding region was mutated and resulted in loss of RII binding. Furthermore, synemin co-localized with RII in SW13/cl.1-vim+ cells and co-immunoprecipitated with RII from adult rat cardiomyocytes. Synemin was localized at the level of Z-lines with RII and desmin in adult hearts, however, neonatal cardiomyocytes showed differential synemin and desmin localization. Quantitative Western blots also showed significantly more synemin was present in failing human hearts. We propose that synemin provides temporal and spatial targeting of PKA in adult and neonatal cardiac myocytes.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Takimoto E, Soergel DG, Janssen PML, Stull LB, Kass DA, Murphy AM. Frequency- and Afterload-Dependent Cardiac Modulation In Vivo by Troponin I With Constitutively Active Protein Kinase A Phosphorylation Sites. Circ Res 2004; 94:496-504. [PMID: 14726477 DOI: 10.1161/01.res.0000117307.57798.f5] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute beta-adrenergic stimulation enhances cardiac contractility, accelerates muscle relaxation, and amplifies the inotropic and lusitropic response to increased stimulation frequency. These effects are modulated by phosphorylation of calcium handling and myofilament proteins such as troponin I (TnI) by protein kinase A (PKA). To more directly delineate the role of TnI PKA phosphorylation, transgenic mice were generated that overexpress cardiac TnI in which the serine residues normally targeted by PKA are mutated to aspartic acid to mimic constitutive phosphorylation (TnIDD22,23). Native cardiac TnI was near completely replaced in one transgenic line as assessed by in vitro phosphorylation, and this led to reduced calcium sensitivity of myofibrillar MgATPase, as expected. TnIDD22,23 mice had mildly enhanced basal systolic and diastolic function, and displayed marked augmentation of frequency-dependent inotropy and relaxation, with a peak frequency response 2-fold greater in mutants than controls (P<0.005). Increasing afterload prolonged relaxation more in nontransgenic than TnIDD22,23 (P<0.02), whereas contractile responses to afterload were similar between these strains. Isoproterenol treatment eliminated the differential force-frequency and afterload response between TnIDD22,23 and controls. In contrast to in vivo studies, isolated isometric trabeculae from nontransgenic and TnIDD22,23 mice had similar basal, isoproterenol-, and frequency-stimulated function, suggesting that muscle shortening may be important to TnI PKA effects. These results support a novel role for cardiac TnI PKA phosphorylation in the rate-dependent enhancement of systolic and diastolic function in vivo and afterload sensitivity of relaxation. These results have implications for cardiac failure in which force-frequency modulation is blunted and afterload relaxation sensitivity increased in association with diminished PKA TnI phosphorylation.
Collapse
Affiliation(s)
- Eiki Takimoto
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md 21205, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bers DM. Regulation of Cellular Calcium in Cardiac Myocytes. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
|
12
|
Turnbull L, Hoh JFY, Ludowyke RI, Rossmanith GH. Troponin I phosphorylation enhances crossbridge kinetics during beta-adrenergic stimulation in rat cardiac tissue. J Physiol 2002; 542:911-20. [PMID: 12154188 PMCID: PMC2290461 DOI: 10.1113/jphysiol.2002.022707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inotropic agents that increase the intracellular levels of cAMP have been shown to increase crossbridge turnover kinetics in intact rat ventricular muscle, as measured by the parameter f(min) (the frequency at which dynamic stiffness is minimum). These agents are also known to increase the level of phosphorylation of two candidate myofibrillar proteins: myosin binding protein C (MyBPC) and Troponin I (TnI), but have no effect on myosin light chain 2 phosphorylation (MyLC2). The aim of this study was to investigate whether the phosphorylation of TnI and/or MyBPC was responsible for the increase in crossbridge cycling kinetics (as captured by f(min)) seen with the elevation of cAMP within cardiac tissue. Using barium-activated intact rat papillary muscle, we investigated the actions of isobutylmethylxanthine (IBMX), an inhibitor of cAMP-dependent phosphatase, which simulates the action of beta-adrenergic agents, and the chemical phosphatase 2,3-butanedione monoxime (BDM), which has been shown to dephosphorylate a number of contractile proteins. The presence of 0.6 mM IBMX approximately doubled the f(min) value of intact rat papillary muscle. This action was unaffected by the addition of BDM. In the presence of IBMX and BDM, the level of phosphorylation of MyBPC was unchanged, that of MyLC2 was reduced to 60 % of control, yet that of TnI was markedly increased (to 30 % above control levels). We conclude that TnI phosphorylation, mediated by cAMP-dependent protein kinase A, is the molecular basis for the enhanced crossbridge cycling seen during beta-adrenergic stimulation of the heart.
Collapse
Affiliation(s)
- Lynne Turnbull
- Biomedical Systems Research Group, Division of Information and Communication Sciences, Macquarie University, NSW 2109, Australia.
| | | | | | | |
Collapse
|
13
|
Herron TJ, Korte FS, McDonald KS. Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ Res 2001; 89:1184-90. [PMID: 11739284 DOI: 10.1161/hh2401.101908] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Adrenergic stimulation increases stroke volume in mammalian hearts as a result of protein kinase A (PKA)-induced phosphorylation of several myocyte proteins. This study investigated whether PKA-induced phosphorylation of myofibrillar proteins directly affects myocyte contractility. To test this possibility, we compared isometric force, loaded shortening velocity, and power output in skinned rat cardiac myocytes before and after treatment with the catalytic subunit of PKA. Consistent with previous studies, PKA increased phosphorylation levels of myosin binding protein C and troponin I, and reduced Ca(2+) sensitivity of force. PKA also significantly increased both maximal force (25.4+/-8.3 versus 31.6+/-11.3 microN [P<0.001, n=12]) and peak absolute power output (2.48+/-1.33 versus 3.38+/-1.52 microW/mg [P<0.05, n=5]) during maximal Ca(2+) activations. Furthermore, PKA elevated power output at nearly all loads even after normalizing for the increase in force. After PKA treatment, peak normalized power output increased approximately 20% during maximal Ca(2+) activations (n=5) and approximately 33% during half-maximal Ca(2+) activations (n=9). These results indicate that PKA-induced phosphorylation of myofibrillar proteins increases the power output-generating capacity of skinned cardiac myocytes, in part, by speeding the step(s) in the crossbridge cycle that limit loaded shortening rates, and these changes likely contribute to greater contractility in hearts after beta-adrenergic stimulation.
Collapse
Affiliation(s)
- T J Herron
- Department of Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | | |
Collapse
|
14
|
Wu LL, Tang C, Liu MS. Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol Regul Integr Comp Physiol 2001; 281:R408-16. [PMID: 11448842 DOI: 10.1152/ajpregu.2001.281.2.r408] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered phosphorylation and Ca(2+) sensitivity of cardiac myofibrillar proteins during different phases of sepsis were investigated. Sepsis was induced by cecal ligation and puncture (CLP). The results show that phosphorylation of troponin I (TnI) was increased by 268% during the early phase (9 h after CLP) but decreased by 46% during the late phase (18 h after CLP) of sepsis. Phosphorylation of C protein was increased by 76% during the early phase but decreased by 41% during the late phase of sepsis. Phosphorylation of myosin light chain-2 (MLC-2) remained unaltered during the early phase but was decreased by 38% during the late phase of sepsis. Phosphorylation of TnT was unaffected during the progression of sepsis. The increases in the phosphorylation of TnI and C protein during early sepsis were associated with the decrease in the Ca(2+) sensitivity of myofilaments and the increases in myocardial changes in tension development (+dP/dt(max)) and cAMP level. The decreases in the phosphorylation of TnI and C protein during late sepsis coincided with the declines in the activities of myofibrillar ATPase, Ca(2+) sensitivity of myofilaments, myocardial +/-dP/dt(max), and cAMP content. The increases and the decreases in the phosphorylation of TnI and C protein, +/-dP/dt(max), and the tissue cAMP level were sensitive to isoproterenol stimulation and propranolol inhibition. These findings suggest that alterations in the phosphorylation of myofibrillar proteins, such as TnI, C protein, and MLC-2, and changes in the activities and the Ca(2+) sensitivity of myofibrillar ATPase may contribute to the altered cardiac function during the progression of sepsis. Furthermore, the sepsis-induced alterations in the phosphorylation and Ca(2+) sensitivity of cardiac myofibrillar proteins were mediated via a beta-adrenergic receptor pathway.
Collapse
Affiliation(s)
- L L Wu
- Department of Physiology and Pathophysiology, Peking University Health Sciences Center, Beijing 100083, China
| | | | | |
Collapse
|
15
|
Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron DS, Bond M. AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 2001; 88:291-7. [PMID: 11179196 DOI: 10.1161/01.res.88.3.291] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compartmentalization of cAMP-dependent protein kinase A (PKA) by A-kinase anchoring proteins (AKAPs) targets PKA to distinct subcellular locations in many cell types. However, the question of whether AKAP-mediated PKA anchoring in the heart regulates cardiac contractile function has not been addressed. We disrupted AKAP-mediated PKA anchoring in cardiac myocytes by introducing, via adenovirus-mediated gene transfer, Ht31, a peptide that binds the PKA regulatory subunit type II (RII) with high affinity. This peptide competes with endogenous AKAPs for RII binding. Ht31P (a proline-substituted derivative), which does not bind RII, was used as a negative control. We then investigated the effects of Ht31 expression on RII distribution, Ca(2+) cycling, cell shortening, and PKA-dependent substrate phosphorylation. By confocal microscopy, we showed redistribution of RII from the perinuclear region and from periodic transverse striations in Ht31P-expressing cells to a diffuse cytosolic localization in Ht31-expressing cells. In the presence of 10 nmol/L isoproterenol, Ht31-expressing myocytes displayed an increased rate and amplitude of cell shortening and relaxation compared with control cells (uninfected and Ht31P-expressing myocytes); with isoproterenol stimulation we observed decreased time to 90% decline in Ca(2+) but no significant difference between Ht31-expressing and control cells in the rate of Ca(2+) cycling or amplitude of the Ca(2+) transient. The increase in PKA-dependent phosphorylation of troponin I and myosin binding protein C on isoproterenol stimulation was significantly reduced in Ht31-expressing cells compared with controls. Our results demonstrate that, in response to beta-adrenergic stimulation, cardiomyocyte function and substrate phosphorylation by PKA is regulated by targeting of PKA by AKAPs.
Collapse
Affiliation(s)
- M A Fink
- Department of Molecular Cardiology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Westfall MV, Turner I, Albayya FP, Metzger JM. Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A. Am J Physiol Cell Physiol 2001; 280:C324-32. [PMID: 11208528 DOI: 10.1152/ajpcell.2001.280.2.c324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contrast, PKA did not influence Ca2+-activated tension in myocytes expressing the slow skeletal isoform of TnI or a chimera (N-slow/card-C TnI), which lack the unique phosphorylatable amino terminal extension found in cTnI. PKA-mediated phosphorylation of a second TnI chimera, N-card/slow-C TnI, which has the amino terminal region of cTnI, caused a decrease in the Ca2+ sensitivity of tension comparable in magnitude to control myocytes. Based on these results, we propose the amino terminal region shared by cTnI and N-card/slow-C TnI plays a central role in determining the magnitude of the PKA-mediated shift in myofilament Ca2+ sensitivity, independent of the isoform-specific functional domains previously defined within the carboxyl terminal backbone of TnI. Interestingly, exposure of permeabilized myocytes to acidic pH after PKA-mediated phosphorylation of cTnI resulted in an additive decrease in myofilament Ca2+ sensitivity. The isoform-specific, pH-sensitive region within TnI lies in the carboxyl terminus of TnI, and the additive response provides further evidence for the presence of a separate domain that directly transduces the PKA phosphorylation signal.
Collapse
Affiliation(s)
- M V Westfall
- Department of Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | |
Collapse
|
17
|
Huang X, Pi Y, Lee KJ, Henkel AS, Gregg RG, Powers PA, Walker JW. Cardiac troponin I gene knockout: a mouse model of myocardial troponin I deficiency. Circ Res 1999; 84:1-8. [PMID: 9915769 DOI: 10.1161/01.res.84.1.1] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Troponin I is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. We deleted the cardiac isoform of troponin I by using gene targeting in murine embryonic stem cells to determine the developmental and physiological effects of the absence of this regulatory protein. Mice lacking cardiac troponin I were born healthy, with normal heart and body weight, because a fetal troponin I isoform (identical to slow skeletal troponin I) compensated for the absence of cardiac troponin I. Compensation was only temporary, however, as 15 days after birth slow skeletal troponin I expression began a steady decline, giving rise to a troponin I deficiency. Mice died of acute heart failure on day 18, demonstrating that some form of troponin I is required for normal cardiac function and survival. Ventricular myocytes isolated from these troponin I-depleted hearts displayed shortened sarcomeres and elevated resting tension measured under relaxing conditions and had a reduced myofilament Ca sensitivity under activating conditions. The results show that (1) developmental downregulation of slow skeletal troponin I occurs even in the absence of cardiac troponin I and (2) the resultant troponin I depletion alters specific mechanical properties of myocardium and can lead to a lethal form of acute heart failure.
Collapse
Affiliation(s)
- X Huang
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation 1998; 98:2919-29. [PMID: 9860796 DOI: 10.1161/01.cir.98.25.2919] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The time course and mechanisms of altered mechanoenergetics and depressed cross-bridge cycling in hypertrophied and failing myocardium are uncertain. METHODS AND RESULTS We studied mechanoenergetics in Dahl salt-sensitive (DS) rats fed high-salt diet (HS) for 6 (HS-6) and 12 (HS-12) weeks to produce compensated hypertrophy and failure. The slope of the end-systolic pressure-volume relation (E'max) was similar in HS-6 and low-salt controls (LS-6), but reduced in HS-12 compared with controls (LS-12). Efficiency [1/slope of oxygen consumption (&f1;O2)-pressure-volume area (PVA) relation] was similar in HS-6 and LS-6 but higher in HS-12 versus LS-12 (59+/-16% versus 44+/-7%, P<0.05). Economy [1/slope of the force-time integral (FTI)-&f1;O2 relation] was similar in HS-6 and LS-6 but higher in HS-12 versus LS-12 (218+/-123 versus 74+/-39x10(3) g. s. mL O2-1. g; P<0.05). Compared with controls, myofibrillar ATPase activity was reduced by 24% in HS-6 and 44% in HS-12. V3 Isomyosin was increased in HS-6 (40+/-12% versus 9+/-8%; P<0.05) and further increased in HS-12 (76+/-10% versus 22+/-18%; P<0.05). Hypothyroid LS-12 rats had 100% V3 isomyosin, yet efficiency, economy, and ATPase values were intermediate between LS-12 and HS-12. HS-12 rats demonstrated increased troponin T3 isoform (17+/-2 versus 23+/-2%, P<0.05). There were no changes in troponin I or tropomyosin isoforms. However, the proportion of phosphorylated troponin T was reduced in HS-12 versus LS-12 hearts (P<.001). CONCLUSIONS In DS rats, the transition to failure is associated with depressed E'max and increased efficiency and economy. These findings are linked to myofibrillar ATPase activity and suggest that mechanisms other than isomyosin switching are important determinants of ventricular energetics. A troponin T isoform switch is one potential mechanism.
Collapse
Affiliation(s)
- T Kameyama
- Cardiology Unit, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Protein phosphorylation acts a pivotal mechanism in regulating the contractile state of the heart by modulating particular levels of autonomic control on cardiac force/length relationships. Early studies of changes in cardiac protein phosphorylation focused on key components of the excitation-coupling process, namely phospholamban of the sarcoplasmic reticulum and myofibrillar troponin I. In more recent years the emphasis has shifted towards the identification of other phosphoproteins, and more importantly, the delineation of the mechanistic and signaling pathways regulating the various known phosphoproteins. In addition to cAMP- and Ca(2+)-calmodulin-dependent kinase processes, these have included regulation by protein kinase C and the ever-emerging family of growth factor-related kinases such as the tyrosine-, mitogen- and stress-activated protein kinases. Similarly, the role of protein dephosphorylation by protein phosphatases has been recognized as integral in modulating normal cardiac cellular function. Recent studies involving a variety of cardiovascular pathologies have demonstrated that changes in the phosphorylation states of key cardiac regulatory proteins may underlie cardiac dysfunction in disease states. The emphasis of this comprehensive review will be on discussing the role of cardiac phosphoproteins in regulating myocardial function and pathophysiology based not only on in vitro data, but more importantly, from ex vivo experiments with corroborative physiological and biochemical evidence.
Collapse
Affiliation(s)
- S T Rapundalo
- Department of Biochemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert, Ann Arbor, MI 48105, USA.
| |
Collapse
|
20
|
Sterin-Borda L, Genaro A, Perez Leiros C, Cremaschi G, Vila Echagüe A, Borda E. Role of nitric oxide in cardiac beta-adrenoceptor-inotropic response. Cell Signal 1998; 10:253-7. [PMID: 9617482 DOI: 10.1016/s0898-6568(97)00125-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined some of the signalling events in the negative modulation of isoproterenol-induced stimulation of contractility in rat isolated atria. Isoproterenol-mediated positive inotropic response is accompanied by the stimulation of nitric oxide synthase (NOS) and an increase in the production of cyclic GMP (cGMP). Inhibition of NOS and guanylate cyclase increased the dose-response curve of isoproterenol on contractility. Inhibitors of calcium flux or calcium calmodulin, but not of protein kinase C, abrogated these mechanisms. The existence of a modulatory negative inotropic-cyclic GMP-mediated mechanism limiting the effect of beta-adrenergic stimulation in myocardium is discussed.
Collapse
Affiliation(s)
- L Sterin-Borda
- Centro de Estudios Farmacológicos y Bótanicos, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
McConnell BK, Moravec CS, Bond M. Troponin I phosphorylation and myofilament calcium sensitivity during decompensated cardiac hypertrophy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H385-96. [PMID: 9486239 DOI: 10.1152/ajpheart.1998.274.2.h385] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have measured myocyte cell shortening, troponin-I (Tn-I) phosphorylation, Ca2+ dependence of actomyosin adenosinetriphosphatase (ATPase) activity, adenosine 3',5'-cyclic monophosphate (cAMP) levels, and myofibrillar isoform expression in the spontaneously hypertensive rat (SHR) during decompensated cardiac hypertrophy (76 wk old) and in age-matched Wistar-Kyoto rat (WKY) controls. The decreased inotropic response to beta-adrenergic stimulation previously observed in myocytes from 26-wk-old SHR was further reduced at 76 wk of age. In response to beta-adrenergic stimulation, Tn-I phosphorylation was greater in the 76-wk-old SHR than in the WKY, although cAMP-dependent protein kinase A (PKA)-dependent Tn-I phosphorylation in the SHR did not increase with progression from compensated (26 wk) to decompensated (76 wk) hypertrophy. We also observed a dissociation between the increased PKA-dependent Tn-I phosphorylation and decreased cAMP levels in the 76-wk-old SHR versus WKY during beta-adrenergic stimulation. Baseline Tn-I phosphorylation was significantly reduced in 76-wk-old SHR versus WKY and was associated with decreased basal cAMP levels and increased Ca2+ sensitivity of actomyosin ATPase activity. The change in myofilament Ca2+ sensitivity during beta-adrenergic stimulation in the 76-wk-old SHR (0.65 pCa units) was over twofold greater than in the 76-wk-old WKY (0.30 pCa units). We also determined whether embryonic troponin T isoforms were reexpressed in decompensated hypertrophy and observed significant reexpression of the embryonic cardiac troponin T isoforms in the 76-wk-old SHR. The significant decrease in Ca2+ sensitivity with beta-adrenergic stimulation in 76-wk-old SHR may contribute to the severely impaired inotropic response during decompensated hypertrophy in the SHR.
Collapse
Affiliation(s)
- B K McConnell
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland 44106, USA
| | | | | |
Collapse
|
22
|
Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart. Circulation 1997; 96:1495-500. [PMID: 9315537 DOI: 10.1161/01.cir.96.5.1495] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In the failing human heart myofibrillar calcium sensitivity of tension development is greater and maximal myofibrillar ATPase activity is less than in the normal heart. Phosphorylation of the cardiac troponin I (cTnI)-specific NH2-terminus decreases myofilament sensitivity to calcium, while phosphorylation of other cTnI sites decreases maximal myofibrillar ATPase activity. METHODS AND RESULTS We examined cTnI phosphorylation in left ventricular myocardium collected from failing hearts at the time of transplant (n=20) and normal hearts from trauma victims (n=24). The relative amounts of actin, tropomyosin, and TnI did not differ between failing and normal myocardium. Using Western blot analysis with a monoclonal antibody (MAb) that recognizes the striated muscle TnI isoforms, we confirmed that the adult human heart expresses only cTnI. A cTnI-specific MAb recognized two bands of cTnI, designated cTnI1 and cTnI2, while a MAb whose epitope is located in the cTnI-specific NH2-terminus recognized only cTnI1. Alkaline phosphatase decreased the relative amount of cTnl1, while protein kinase A and protein kinase C increased cTnI1. The percentage of cTnI made up of cTnI1, the phosphorylated form of TnI, is greater in the normal than the failing human heart (P<.00). CONCLUSIONS This phosphorylation difference could underlie the reported greater myofibrillar calcium sensitivity of failing myocardium. The functional consequence of this difference may be an adaptive or maladaptive response to the lower and longer calcium concentration transient of the failing heart, eg, enhancing force development or producing ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- G S Bodor
- Department of Laboratories, Denver Health Medical Center, Colo, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Multiple closely related, yet distinct, isoforms exist for each of the cardiac contractile proteins. The isoform composition of the heart changes in response to developmental and physiologic cues. This paper reviews the molecular basis for cardiac contractile protein isoform diversity and the functional consequences of isoform shifts.
Collapse
Affiliation(s)
- R N Kitsis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, USA
| | | |
Collapse
|
24
|
Dohet C, al-Hillawi E, Trayer IP, Rüegg JC. Reconstitution of skinned cardiac fibres with human recombinant cardiac troponin-I mutants and troponin-C. FEBS Lett 1995; 377:131-4. [PMID: 8543035 DOI: 10.1016/0014-5793(95)01319-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Troponin C (TnC) could be extracted from skinned porcine cardiac muscle fibres and their Ca2+ sensitivity restored by reconstitution with recombinant human cardiac TnC. After extraction of troponin I (TnI) and TnC using the vanadate treatment method of Strauss et al. [Strauss, J. D., Zeugner, C., Van Eyk, J.E., Bletz, C., Troschka, M. and Rüegg, J.C. (1992) FEBS Lett. 310, 229-234], skinned porcine cardiac muscle fibres were reconstituted with wild-type recombinant human cardiac TnC and either wild-type cardiac TnI or several mutant isoforms of human TnI. Reconstitution with wild-type proteins restored the Ca2+ sensitivity of the tissue and phosphorylation of the TnI with the catalytic subunit of protein kinase A reduced the Ca2+ sensitivity (i.e.-log[Ca2+] for 50% of maximal force) as has been shown by others. However, reconstitution with the TnI mutant Ser-23Asp/Ser-24Asp mimicking the phosphorylated form of cardiac TnI, led to a reduced Ca2+ sensitivity compared with reconstitution with wild-type TnI, whereas the mutant Ser-23Ala/Ser-24Ala behaved as the dephosphorylated form of TnI. These data confirm the importance of negative charge in this region of the TnI molecule in altering the Ca2+ responsiveness in this system.
Collapse
Affiliation(s)
- C Dohet
- II Physiologisches Institut, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
25
|
Zhang R, Zhao J, Mandveno A, Potter JD. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res 1995; 76:1028-35. [PMID: 7758157 DOI: 10.1161/01.res.76.6.1028] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cardiac troponin (Tn) I (CTnI), compared with skeletal TnI, contains extra amino acids (32 to 33) at its amino terminus, including two adjacent serine residues. These two serine residues are believed to be phosphorylated by protein kinase A (PKA) upon stimulation of the heart by beta-agonists. In this study, we found that phosphorylation of a cardiac skinned muscle preparation by PKA, mainly at CTnI, results in a decrease in the Ca2+ sensitivity of muscle contraction. The pCa50 decreased by approximately 0.27 +/- 0.06 pCa units upon phosphorylation. To study cardiac muscle relaxation, we used diazo-2, a photolabile Ca2+ chelator with a low Ca2+ affinity in its intact form that is converted to a high-affinity form after photolysis. We found that the rate of cardiac muscle relaxation increased from a time of half-relaxation (t1/2) = 110 +/- 10 milliseconds to t1/2 = 70 +/- 8 milliseconds after CTnI phosphorylation. This result demonstrates that CTnI phosphorylation can be linked with the increased rate of muscle relaxation in a relatively intact muscle preparation. Since CTnI phosphorylation has been shown previously to affect the Ca2+ affinity and Ca2+ off-rate of CTnC in vitro, it is likely that the faster relaxation seen here reflects faster dissociation of Ca2+ from cardiac TnC (CTnC). Model calculations show that increased dissociation of Ca2+ from CTnC, coupled with the faster uptake of Ca2+ by the sarcoplasmic reticulum stimulated by PKA phosphorylation of phospholamban, can account for the faster relaxation seen in the inotropic response of the heart to catecholamines.
Collapse
Affiliation(s)
- R Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
26
|
Wattanapermpool J, Reiser PJ, Solaro RJ. Troponin I isoforms and differential effects of acidic pH on soleus and cardiac myofilaments. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C323-30. [PMID: 7864071 DOI: 10.1152/ajpcell.1995.268.2.c323] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Differences in pH sensitivity of tension generation between developing and adult cardiac myofilaments, which contain the same isoform of troponin C (TnC), have been proposed to be due to troponin I (TnI) isoform switching from the slow skeletal (ss) to cardiac (c) TnI isoforms (21). We investigated the effects of acidic pH on Ca(2+)-activation of force in chemically skinned preparations of adult rat trabeculae and single soleus fibers that also share the same TnC isoform. Compared with the soleus fibers, trabeculae demonstrated a greater suppression of tension and a rightward shift in pCa50 (-log half-maximally activating molar Ca2+ concentration) when pH was decreased from 7.0 to 6.2. The pH-induced shift in pCa50 in soleus fibers did not change with sarcomere length. Troponin subunit interactions were also investigated, using cardiac troponin C (cTnCIA) labeled with a fluorescent probe, 2-(4'-iodoacetamidoanilino)-naphthalene-6-sulfonic acid. Under acidic conditions, cTnCIA demonstrated a decrease in Ca(2+)-affinity. This decrease was amplified both in the binary complex cTnCIA-cTnI and in the complex cTnCIA-cTnI-cTnT-tropomyosin to the same extent. In contrast, substitution of ssTnI for cTnI in these complexes produced the same decrease in Ca2+ affinity in response to acidic pH as cTnCIA alone. These results support our hypothesis that differential effects of pH on tension generation and Ca2+ sensitivity between soleus fibers and trabeculae are due to the presence of different isoforms of TnI.
Collapse
Affiliation(s)
- J Wattanapermpool
- Department of Physiology and Biophysics, College of Medicine, University of Illinois, Chicago 60612-7342
| | | | | |
Collapse
|
27
|
Morimoto S, Ohtsuki I. Ca2+ binding to cardiac troponin C in the myofilament lattice and its relation to the myofibrillar ATPase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:597-602. [PMID: 8001574 DOI: 10.1111/j.1432-1033.1994.tb20085.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ca(2+)-binding properties of troponin C in the intact myofilament lattice and their relation to the activation of ATPase were investigated with isolated porcine cardiac myofibrils. Ca2+ binding, which is composed of two classes of binding sites with different affinities (classes 1 and 2), was clearly detected by a novel method for subtracting the large background activity of myofibrillar Ca2+ binding. The classes 1 and 2 were equivalent stoichiometrically to the two high-affinity sites (sites III and IV) and a single low-affinity site (site II) of troponin C. In the presence of ATP, positive cooperativity was observed in the Ca2+ binding of class-2 sites and the Hill equation parameters were in excellent agreement with those for the Ca(2+)-activated myofibrillar ATPase activity, which indicated that the activation of ATPase is a linear function of the Ca2+ occupancy of site II. In the absence of ATP, a marked increase in the affinity of only class-2 sites was observed while the cooperativity was lost. These results provide direct evidence that some feedback mechanism exists between myosin crossbridge attachment and the Ca2+ binding to site II of troponin C, which may thus confer positive cooperativity on the Ca2+ activation of myofibrillar ATPase activity.
Collapse
Affiliation(s)
- S Morimoto
- Department of Pharmacology, Faculty of Medicine, Kyushu University, Japan
| | | |
Collapse
|
28
|
Pollesello P, Ovaska M, Kaivola J, Tilgmann C, Lundström K, Kalkkinen N, Ulmanen I, Nissinen E, Taskinen J. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61945-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Guo X, Wattanapermpool J, Palmiter K, Murphy A, Solaro R. Mutagenesis of cardiac troponin I. Role of the unique NH2-terminal peptide in myofilament activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36593-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Hofmann PA, Lange JH. Effects of phosphorylation of troponin I and C protein on isometric tension and velocity of unloaded shortening in skinned single cardiac myocytes from rats. Circ Res 1994; 74:718-26. [PMID: 8137507 DOI: 10.1161/01.res.74.4.718] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie, the [Ca2+] at which tension was 50% of maximum, and was lower after PKA treatment (pCa50 5.58) than before PKA treatment (pCa50 5.74). This suggests beta-adrenergic stimulation of the heart and subsequent increases in PKA activity and phosphorylation of troponin I and C protein lead to a significant decrease in tension-generating ability at a given submaximum [Ca2+]. Unloaded shortening velocity was determined by measuring the time required to take up various amounts of slack imposed at one end of the cardiac myocyte preparation. Unloaded shortening velocity during maximum activation was 2.88 +/- 0.11 muscle lengths per second (mean +/- SEM) before PKA exposure and 2.86 +/- 0.13 muscle lengths per second after PKA exposure. Unloaded shortening velocity during 40% of maximum activation was 1.91 +/- 0.25 muscle lengths per second before PKA exposure and 2.17 +/- 0.15 muscle lengths per second after PKA exposure. The absence of an effect of PKA on unloaded shortening velocity in skinned ventricular myocytes suggests that beta-adrenergic stimulation of myocardium either does not affect myofilament velocity of shortening or alters velocity of shortening by a non-PKA-dependent process.
Collapse
Affiliation(s)
- P A Hofmann
- Department of Physiology and Biophysics, College of Medicine, University of Tennessee, Memphis
| | | |
Collapse
|
31
|
Pagani ED, O'Connor B, Allen PD, Hille D, Silver PJ. Effect of calcium binding protein modulators on myofibrillar MgATPase activity and cGMP-inhibitable phosphodiesterase activity from human cardiac muscle. Drug Dev Res 1993. [DOI: 10.1002/ddr.430290305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Stith RD, Reddy YS. Myocardial contractile protein ATPase activities in adrenalectomized and thyroidectomized rats. Basic Res Cardiol 1992; 87:519-26. [PMID: 1485885 DOI: 10.1007/bf00788662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This report compares the effects of adrenalectomy and thyroidectomy, with and without hormone replacement, on loss of contractile protein ATPase activities. The rationale for this study was derived from the similarities in their intracellular receptors, mechanisms of action, and the large number of proteins regulated by both hormones. Rats were adrenalectomized, thyroidectomized, or both, and were subsequently treated for 6 weeks with hydrocortisone, triiodothyronine, or saline. Sham-operated rats were given saline for the same period of time. Six weeks of adrenal insufficiency resulted in diminished enzymatic activity of myofibrillar, Ca(2+)-activated myosin ATPase, and actin-activated myosin ATPase fractions. Treatment with hydrocortisone prevented the decline in enzymatic activity due to adrenalectomy. Likewise, thyroidectomy caused a loss of enzymatic activity which was prevented by treatment with triiodothyronine. The full deleterious effect of combined ablation could be partially prevented by treatment with either hydrocortisone or triiodothyronine, but the latter was most effective. The results suggest that hydrocortisone and triiodothyronine each had significant positive effects in the presence of the other, but not in its absence, on the activity of myofibrillar Ca(2+)-dependent Mg-ATPase and Ca(2+)-activated myosin ATPase. The effects of these two hormones on actin-activated myosin ATPase activity were more independent of each other. We conclude that the actions of thyroid and glucocorticoid hormones on the heart are interrelated and that optimum myocardial function results from their combined action.
Collapse
Affiliation(s)
- R D Stith
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City
| | | |
Collapse
|
33
|
Skoyles JR, Sherry KM, Price C. Intravenous milrinone in patients with severe congestive cardiac failure awaiting heart transplantation. J Cardiothorac Vasc Anesth 1992; 6:222-5. [PMID: 1568013 DOI: 10.1016/1053-0770(92)90205-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J R Skoyles
- Department of Anaesthesia, Northern General Hospital, Sheffield, UK
| | | | | |
Collapse
|
34
|
Relationship between the structure and effects of cardiotonics with nonglycoside and noncatecholamine structure. Pharm Chem J 1992. [DOI: 10.1007/bf00772931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Westfall MV, Solaro RJ. Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. Circ Res 1992; 70:302-13. [PMID: 1531186 DOI: 10.1161/01.res.70.2.302] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied changes in myofibrillar function and protein profiles after complete global ischemia with anoxia in rat hearts. Hearts were exposed to global ischemia and anoxia (CGI) for 30 or 60 minutes at 37 degrees C, and myofibrils were prepared for measurement of Ca(2+)-dependent Mg(2+)-ATPase activity at pH 7.0 and 6.5. Hearts incubated in cold saline (1 +/- 1 degrees C) and nonincubated hearts served as controls. Maximum ATPase activity was unchanged at pH 7.0 and pH 6.5 in myofibrils from hearts treated with 30 or 60 minutes of CGI. At pH 7.0, the Hill coefficient, which is an index of cooperative interactions among thin-filament proteins, was unchanged after 30 minutes of CGI but was significantly increased after 60 minutes of CGI. A similar trend for increased cooperativity was observed when myofibrillar ATPase activity was measured at pH 6.5 in myofibrils from rat hearts made ischemic for 30 or 60 minutes. Both 30 and 60 minutes of CGI resulted in increased pCa50 values (half-maximally activating free [Ca2+]) at pH 7.0 and pH 6.5. Densitometric analysis of myofibrillar proteins separated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that troponin I and troponin T were degraded during 60 minutes of CGI. Two new protein bands appearing in ischemia-treated myofibrils were identified as partially degraded troponin I and troponin T with Western blots. The troponin I fragment could be phosphorylated by cAMP-dependent protein kinase. In addition, we observed phosphorylation of a protein band that corresponded to myosin light chain-2 in myofibrils from CGI-treated hearts. These results suggest that degradation of thin-filament proteins may contribute to the changes in cooperativity of Ca2+ regulation of ATPase activity observed in the myofibrils from rat hearts exposed to CGI.
Collapse
Affiliation(s)
- M V Westfall
- Department of Physiology and Biophysics, University of Illinois, Chicago 60680
| | | |
Collapse
|
36
|
Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in the normal and failing human left ventricle: a correlation with myofibrillar ATPase activity. Basic Res Cardiol 1992; 87 Suppl 1:117-27. [PMID: 1386729 DOI: 10.1007/978-3-642-72474-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of troponin T, a thin filament regulatory protein, was examined in normal and failing left ventricles. The samples were obtained from the hearts of patients with severe heart failure who were undergoing cardiac transplantation, and from normal adult hearts that could not be used for transplantation. Western blots of the myofibrillar proteins demonstrated two isoforms, troponin T 1 (TnT1) and troponin T 2 (TnT2). TnT2 is expressed at significantly higher levels in failing hearts (p less than 0.004). Western blots of two-dimension SDS-PAGE gels resolved two dominant spots of TnT1 and of TnT2 and several minor troponin T species. Alkaline phosphatase treatment markedly decreased the sizes of the two acidic spots while increasing the two more basic spots by a comparable amount. Myofibrillar ATPase activity had an inverse and negative linear relationship (r = 0.7, p less than 0.02) with the myofibrillar percentage of total troponin T comprised of TnT2. In that heart failure in these transplant patients had multiple bases, we propose that rather than a cause of heart failure, the disease-associated changes in troponin T isoform expression are an adaptation to abnormal myocardial function.
Collapse
Affiliation(s)
- P A Anderson
- Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
37
|
Abstract
Troponin I is the inhibitory component of troponin, the thin filament regulatory complex in striated muscle. Separate genes encode cardiac-specific fast and slow skeletal-specific isoforms of this protein. We have previously described gene switching from the slow skeletal to the cardiac troponin I mRNA expression in developing rat heart. The purpose of this work was to characterize the expression of the different troponin isoforms in the human heart. Human cardiac and slow skeletal troponin I cDNA probes were obtained by screening an adult cardiac cDNA library and by Taq polymerase amplification of RNA from an infant's heart, respectively. We found that the cardiac troponin I isoform is tissue-specific in its expression in normal adult tissues. RNA blot analysis of cardiac ventricular RNA from infants with congenital heart disease and from an adult with cardiomyopathy revealed expression of human cardiac troponin I in all analyzed specimens. In addition, we found expression of slow skeletal troponin I mRNA and protein in infant hearts but no detectable mRNA expression in the adult heart. We conclude that troponin I isoforms are developmentally regulated in the human heart by a mechanism similar to that in the rat heart.
Collapse
Affiliation(s)
- N M Hunkeler
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Mo
| | | | | |
Collapse
|
38
|
Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991; 69:1226-33. [PMID: 1934353 DOI: 10.1161/01.res.69.5.1226] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of troponin (Tn) T, a thin-filament regulatory protein, was examined in left ventricular myocardium from normal and from failing adult human hearts. The differences in isoform expression between normal and failing myocardium led us to examine the ontogenic expression of TnT in human striated muscle. Left ventricular samples were obtained from patients with severe heart failure undergoing cardiac transplantation and normal adult organ donors. Fetal muscle was obtained from aborted fetuses after 14-15 weeks of gestation, and adult skeletal muscle was obtained from surgical biopsies. Western blots of normal and failing adult heart proteins demonstrated that two isoforms, TnT1 and TnT2, are expressed in different amounts, with TnT2 being significantly greater in failing hearts (p less than 0.004). Western blots of two-dimensional gels of these proteins resolved two predominant spots of both TnT1 and TnT2 and several minor TnT species. Alkaline phosphatase treatment converted the two major spots of each isoform into the single more basic spots. A comparison of the ATPase activities and the TnT2 percentage of total TnT in individual failing and normal adult hearts demonstrated an inverse and negative relation (r = 0.7, p less than 0.02). In the fetal heart, four TnT isoforms were found, two of which had the same electrophoretic mobilities as the adult cardiac isoforms TnT1 and TnT2. Fetal skeletal muscle expressed two of the four fetal cardiac TnT isoforms, one of which comigrated with adult cardiac TnT1. These cardiac isoforms were expressed in low abundance in fetal skeletal muscle relative to seven fast skeletal muscle TnT isoforms. No cardiac isoforms were present in adult skeletal muscle. Because many etiologies caused heart failure in the transplant patients, we propose that the disease-associated increased expression of the TnT isoform TnT2 is an adaptation to the heart failure state and a partial recapitulation of the fetal expression of cardiac TnT isoforms.
Collapse
Affiliation(s)
- P A Anderson
- Department of Pediatrics, Duke University, Durham, N.C
| | | | | | | | | |
Collapse
|
39
|
Napolitano R, Vittone L, Mundiña C, Chiappe de Cingolani G, Mattiazzi A. Decrease in tetanic tension elicited by beta-adrenergic stimulation. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:303-7. [PMID: 1723319 DOI: 10.3109/13813459109146941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of beta-adrenergic stimulation on tetanic tension (TT), maximal rate of rise of tension (+TT) and phospholamban (PHL) phosphorylation were studied in the perfused rat heart. 3 x 10(-8) M isoproterenol perfused at different [Ca2+]o 0.25, 1.35 and 3.85 mM, significantly decreased TT while increased +TT and PHL phosphorylation at the three [Ca2+]o studied. Regression lines of the relationship between +TT and TT from individual data obtained at each [Ca2+]o in the presence and in the absence of isoproterenol, show that for the same level of +TT, TT is lower in the presence of isoproterenol, i.e. at high levels of PHL phosphorylation. The slopes of the lines were 0.137 s and 0.427 s (P less than 0.05) in the presence and absence of isoproterenol respectively. The decrease in TT produced by the beta-agonist can be attributed to its relaxant action prevailing over its inotropic effect and may represent the mechanical expression of the enhanced phosphorylation of phospholamban.
Collapse
Affiliation(s)
- R Napolitano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
40
|
Rosenthal RA, Lowenstein JM. Inhibition of phosphorylation of troponin I in rat heart by adenosine and 5'-chloro-5'-deoxyadenosine. Biochem Pharmacol 1991; 42:685-92. [PMID: 1859469 DOI: 10.1016/0006-2952(91)90332-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have investigated the effects of adenosine on protein phosphorylation in extracts of rat heart. Incubation of a myofibrillar fraction with [gamma-32P]ATP resulted in the phosphorylation of several proteins by endogenous protein kinases. The adenosine analog 5'-chloro-5'-deoxyadenosine inhibited the phosphorylation of a 29 kD protein in this preparation. The protein was identified as cardiac troponin I (cTnI) by two-dimensional gel electrophoresis, using purified cTnI as standard. Addition of the catalytic subunit of cAMP-dependent protein kinase to the myofibrillar fraction increased phosphorylation of cTnI; this increase was inhibited by 5'-chloro-5'-deoxyadenosine and adenosine. Phosphorylation of purified cTnI by the catalytic subunit was also inhibited by 5'-chloro-5'-deoxyadenosine. Under these conditions used, 50% inhibition of phosphorylation by either endogenous or exogenous kinase was observed at approximately 50 microM 5'-chloro-5'-deoxyadenosine or adenosine. The inhibition described here occurred independently of catecholamines. The effects of ADP, AMP, and adenine on cTnI phosphorylation are also described.
Collapse
Affiliation(s)
- R A Rosenthal
- Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254
| | | |
Collapse
|
41
|
Andres J, Moczarska A, Stepkowski D, Kakol I. Contractile proteins in globally "stunned" rabbit myocardium. Basic Res Cardiol 1991; 86:219-26. [PMID: 1837710 DOI: 10.1007/bf02190601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isolated working rabbit heart preparation was used to study whether the "contractile machinery" remains unchanged in globally stunned myocardium. The function of the heart has been measured in nonischemic and postischemic conditions. The effect of isoprenaline or calcium chloride administration in both conditions was also studied. Myocardial contractile function was significantly depressed after 20-min global ischemia and returned to normal after CaCl2 and supranormal values after isoprenaline administration. From hearts used in experiments myofibrils were prepared and their ATPase activity was determined. It was observed that myofibrils prepared from "stunned" myocardium showed about 50% increase in ATPase activity in the presence of CaCl2. Subjection of the heart to ischemia caused a decrease in calcium sensitivity of the myofibrillar ATPase. Myofibrils obtained from ischemic hearts but subjected to isoprenaline or CaCl2 administration exhibited increased calcium sensitivity over that of control heart. These effects were accompanied by changes in the extent of phosphorylation of troponin I (TNI) and myosin light chains. The modification of contractile apparatus in the postischemic period described in this paper may contribute to the overall mechanism of myocardial stunning.
Collapse
Affiliation(s)
- J Andres
- University School of Medicine, Department of Anaesthesiology and Intensive Therapy, Kraków, Poland
| | | | | | | |
Collapse
|
42
|
Hoh JF, Rossmanith GH, Hamilton AM. Effects of dibutyryl cyclic AMP, ouabain, and xanthine derivatives on crossbridge kinetics in rat cardiac muscle. Circ Res 1991; 68:702-13. [PMID: 1720712 DOI: 10.1161/01.res.68.3.702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In a previous communication, we showed that beta-adrenergic stimulation of cardiac muscles was associated with an increase in the rate of cycling of crossbridges as measured by perturbation analysis in the frequency domain. In this analysis, the frequency at which dynamic stiffness is a minimum (fmin) is taken as a measure of the rate of crossbridge cycling. In this paper, we test the hypothesis that the beta-adrenergic receptor-induced increase in crossbridge cycling rate is mediated by elevation of the intracellular level of cyclic AMP. The approach taken is to compare the effects on fmin in rat papillary muscles during Ba(2+)-activated contractures of 1) an agonist of cyclic AMP that can easily penetrate the cell, namely, dibutyryl cyclic AMP, 2) agents that block cyclic AMP phosphodiesterase, namely, the xanthine derivatives isobutylmethylxanthine and caffeine, and 3) an inotropic agent that does not affect the intracellular level of cyclic AMP, namely, ouabain. Our results showed that dibutyryl cyclic AMP at a dose of 5 mM has the same actions as beta-adrenergic stimulation: it potentiated the isometric twitch force, reduced the time to peak tension and time to half relaxation, and shifted fmin by a factor of 1.8 +/- 0.1 (n = 5). Isobutylmethylxanthine at up to 1.1 mM also acted in the same manner, increasing fmin by a factor of 1.8 +/- 0.2 (n = 6), but ouabain, at a dose (0.03 mM) sufficient to potentiate twitch force by 40 +/- 2% (n = 4), was without effect on the time course of the twitch nor was fmin changed (n = 4). Our findings support the hypothesis that a beta-adrenergic receptor-mediated increase in crossbridge cycling rate is due to an increase in intracellular cyclic AMP level and illustrate the usefulness of the frequency domain analysis approach in the analysis of the mechanism of action of inotropic agents.
Collapse
Affiliation(s)
- J F Hoh
- Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
43
|
Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67744-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Bhaskar M, Trachewsky D, Stith RD, Reddy YS. Effects of riboflavin analogues and diuretics on the spontaneously hypertensive rat heart. Basic Res Cardiol 1990; 85:444-52. [PMID: 2148869 DOI: 10.1007/bf01931490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The chronic treatment of spontaneously hypertensive rats (SHR) with 7,8-dimethyl-10-(3-chlorobenzyl) isoalloxazine [CBI], 7,8-diethyl-10-aminol isoalloxazine [DEAI], enduron (methyclothiazide) and amiloride were studied for their effects on blood pressure and cardiac contractile protein ATPase activities. After 35 weeks of treatment all the above antihypertensive agents showed a decrease in blood pressure in the SHR (p less than 0.01). Chronic treatment with CBI, DEAI, enduron, and amiloride significantly improved the myofibrillar ATPase activity at all pCa2+ concentrations (p less than 0.01). Furthermore, CBI, DEAI, enduron, and amiloride drug treatments enhanced actin-activated myosin ATPase activity (p less than 0.01). The Ca2(+)-activated myosin ATPase activity was significantly elevated after treating with CBI and DEAI (p less than 0.01). These results suggest that the antihypertensive agents used in this study helped in reducing the blood pressure with a subsequent increase in myocardial contractile protein ATPase activity.
Collapse
Affiliation(s)
- M Bhaskar
- Department of Physiology and Biophysics, University of Oklahoma Health Sciences Center, Oklahoma City
| | | | | | | |
Collapse
|
45
|
Puceat M, Clement O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G. Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 1990; 67:517-24. [PMID: 2115824 DOI: 10.1161/01.res.67.2.517] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the changes in the properties of cardiac contractile proteins due to neurohormonal stimulation, different agonists were applied to single cells isolated from rat ventricle. Cells were then rapidly skinned by Triton X-100, and force was recorded after gluing the cells to a strain gauge. The skinned cells had mechanical properties very similar to those described for thin trabeculas. Tension-pCa relations were highly reproducible from one cell to another, with sarcomere length fixed at 2.1 microns. The application of alpha 1-adrenergic and muscarinic agonists, which increase the turnover of phosphatidylinositol, for 5 minutes before skinning the cells increased the sensitivity of the myofilaments to calcium, as indicated by a leftward shift of the tension-pCa relation, whereas beta-adrenergic stimulation induced a rightward shift. The increase in calcium sensitivity was also evoked by protein kinase C activators such as 1,2-dioctanoylglycerol and phorbol 12-myristate 13-acetate but not by protein kinase C itself or by purinergic agonists, although the latter also increased the turnover of phosphatidylinositol. Incubation of the skinned cells with phosphatase reversed the alterations in calcium sensitivity induced by previous agonist stimulation of the intact cells. In conclusion, this study demonstrates a potentially influential mechanism for the physiological regulation of cardiac muscle contractility.
Collapse
Affiliation(s)
- M Puceat
- Physiologie Cellulaire Cardiaque, INSERM U-241, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
46
|
Noland T, Raynor R, Kuo J. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47130-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Herzig JW, Botelho LH, Solaro RJ. Myofibrillar Ca++ activation and heart failure--Ca++ sensitization by the cardiotonic agent APP 201-533. Basic Res Cardiol 1989; 84 Suppl 1:117-24. [PMID: 2818453 DOI: 10.1007/bf02650351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Certain forms of cardiac failure appear to be associated with a decrease in the Ca++ sensitivity of the contractile structures, possibly due to troponin I phosphorylation. Interference of cardiotonic drugs with myofibrillar Ca++ activation instead of enhancement of Ca++ influx may therefore provide a more causal therapeutic concept in the treatment of cardiac insufficiency. APP 201-533 (3-Amino-6-methyl-5-phenyl-2(1H)-pyridinone) (the structure of which is shown below) is a novel cardiotonic agent acting neither via beta adrenoceptor stimulation nor inhibition of Na+/K+ ATPase. In the 100 microM concentration range, it increases the Ca++ sensitivity and the Ca++ affinity of functionally isolated cardiac contractile structures. This coincides with an inhibitory effect on the cAMP-dependent protein kinase from rat liver. A possible relation with the regulation of troponin I phosphorylation is discussed.
Collapse
Affiliation(s)
- J W Herzig
- Department Research CVS, Ciba-Geigy Ltd., Basel, Switzerland
| | | | | |
Collapse
|
48
|
von der Leyen H. Phosphodiesterase inhibition by new cardiotonic agents: mechanism of action and possible clinical relevance in the therapy of congestive heart failure. KLINISCHE WOCHENSCHRIFT 1989; 67:605-15. [PMID: 2671473 DOI: 10.1007/bf01718141] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cyclic AMP is known as a secondary messenger regulating the myocardial force of contraction. For the degradation of cAMP multiple forms of PDE within the cell are described, which vary according to substrate specificity, kinetic characterization, and cellular localization. One of these isoenzymes, the low Km cAMP-specific PDE (PDE III), which seems to be closely related to cardiotonic effects of PDE inhibitors, exists either in a particulate form (in dogs), probably associated with the sarcoplasmic reticulum, or in soluble form (in guinea pig). The existence of different forms of PDE III possibly reflects a different pooling or compartmentalization of cAMP. Many agents selectively inhibiting PDE III are described which potently increase the force of contraction and which exert vasodilatory effects. Besides PDE inhibition some of these agents possess additional cAMP-independent actions, e.g., sensitization of the contractile proteins to Ca2+, prolongation of the action potential, or prolongation of the open state of the Na+-channel. Since agents which nonselectively inhibit PDE are known as potent positive inotropic agents (e.g., IBMX), PDE III inhibition itself, but not a selectivity for PDE III inhibition, seems to be a prerequisite for this mechanism of action of cardiotonic drugs. Investigations with preparations from diseased human myocardium show that the beta-adrenoceptor agonist isoprenaline as well as the PDE inhibitor IBMX increase the force of contraction to only about one-third of the maximal effect of the cardiac glycoside dihydro-ouabain or Ca2+. In nonfailing human heart preparations all agents had equal activity. Possible reasons for these differences may be a decreased responsiveness to beta-adrenoceptor stimulation (beta-receptor down-regulation) or an inappropriate increase in cAMP levels due to increased activity of inhibitory Gi-proteins with resulting decrease of adenylate cyclase activity in the failing heart. Besides a short-term clinical and hemodynamic improvement of congestive heart failure, uncontrolled long-term administration of PDE III-inhibitor agents failed to produce sustained clinical benefit and had no effect on survival. Controlled long-term studies with new cardiotonic agents in patients with severe CHF are still lacking.
Collapse
Affiliation(s)
- H von der Leyen
- Abteilung Allgemeine Pharmakologie, Universitäts-Krankenhaus Eppendorf, Hamburg
| |
Collapse
|
49
|
Pagani ED, Silver PJ. Physiological and pharmacological modulation of cardiac contractile proteins. Drug Dev Res 1989. [DOI: 10.1002/ddr.430180404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Beier N, Jaquet K, Schnackerz K, Heilmeyer LM. Isolation and characterization of a highly phosphorylated troponin from bovine heart. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:327-34. [PMID: 3416877 DOI: 10.1111/j.1432-1033.1988.tb14285.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A modified procedure for isolation of troponin from bovine heart is described, which results in a stable and highly phosphorylated protein. 31P-NMR spectra show up to four phosphoserine signals indicating that at least four serine residues of cardiac troponin are phosphorylated in the intact organ. The hydrodynamic parameters of phosphotroponin are almost identical to those previously published. Characteristically cardiac troponin shows a strong tendency to associate that is dependent on protein concentration. Mg2+ may specifically induce an aggregation, which can be observed during sedimentation. This phenomenon seems to be analogous to the Mg2+-induced dimerization of cardiac troponin C [Jaquet, K. and Heilmeyer, L. M. G., Jr (1987) Biochem. Biophys. Res. Commun. 145, 1390-1396]. Upon Mg2+ saturation a shift of one of the four 31P-NMR signals is observed. The affinity of troponin to Ca2+ is reduced when the protein concentration is enhanced only in the presence of Mg2+. This effect of Mg2+ suggests a model for the regulation of the Ca2+-binding affinity of cardiac troponin.
Collapse
Affiliation(s)
- N Beier
- Abteilung für Biochemie Supramolekularer Systeme, Ruhr-Universität Bochum, Federal Republic of Germany
| | | | | | | |
Collapse
|