1
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
2
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
3
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Vogeleer P, Létisse F. Dynamic Metabolic Response to (p)ppGpp Accumulation in Pseudomonas putida. Front Microbiol 2022; 13:872749. [PMID: 35495732 PMCID: PMC9048047 DOI: 10.3389/fmicb.2022.872749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The stringent response is a ubiquitous bacterial reaction triggered by nutrient deprivation and mediated by the intracellular concentrations of ppGpp and pppGpp. These alarmones, jointly referred to as (p)ppGpp, control gene transcription, mRNA translation and protein activity to adjust the metabolism and growth rate to environmental changes. While the ability of (p)ppGpp to mediate cell growth slowdown and metabolism adaptation has been demonstrated in Escherichia coli, it’s role in Pseudomonas putida remains unclear. The aims of this study were therefore to determine which forms of (p)ppGpp are synthetized in response to severe growth inhibition in P. putida, and to decipher the mechanisms of (p)ppGpp-mediated metabolic regulation in this bacterium. We exposed exponentially growing cells of P. putida to serine hydroxamate (SHX), a serine analog known to trigger the stringent response, and tracked the dynamics of intra- and extracellular metabolites using untargeted quantitative MS and NMR-based metabolomics, respectively. We found that SHX promotes ppGpp and pppGpp accumulation few minutes after exposure and arrests bacterial growth. Meanwhile, central carbon metabolites increase in concentration while purine pathway intermediates drop sharply. Importantly, in a ΔrelA mutant and a ppGpp0 strain in which (p)ppGpp synthesis genes were deleted, SHX exposure inhibited cell growth but led to an accumulation of purine pathway metabolites instead of a decrease, suggesting that as observed in other bacteria, (p)ppGpp downregulates the purine pathway in P. putida. Extracellular accumulations of pyruvate and acetate were observed as a specific metabolic consequence of the stringent response. Overall, our results show that (p)ppGpp rapidly remodels the central carbon metabolism and the de novo purine biosynthesis pathway in P. putida. These data represent a hypothesis-generating resource for future studies on the stringent response.
Collapse
|
5
|
Bange G, Bedrunka P. Physiology of guanosine-based second messenger signaling in Bacillus subtilis. Biol Chem 2021; 401:1307-1322. [PMID: 32881708 DOI: 10.1515/hsz-2020-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
The guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| |
Collapse
|
6
|
Bubnov DM, Yuzbashev TV, Fedorov AS, Bondarenko FV, Savchenko AS, Vybornaya TV, Filippova SS, Sineoky SP. Glutamyl- and Glutaminyl-tRNA Synthetases Are a Promising Target for the Design of an L-Threonine–Producing Strain. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Myers AR, Thistle DP, Ross W, Gourse RL. Guanosine Tetraphosphate Has a Similar Affinity for Each of Its Two Binding Sites on Escherichia coli RNA Polymerase. Front Microbiol 2020; 11:587098. [PMID: 33250875 PMCID: PMC7676912 DOI: 10.3389/fmicb.2020.587098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
During nutrient deprivation, the bacterial cell undergoes a stress response known as the stringent response. This response is characterized by induction of the nucleotide derivative guanosine tetraphosphate (ppGpp) that dramatically modulates the cell's transcriptome. In Escherichia coli, ppGpp regulates transcription of as many as 750 genes within 5 min of induction by binding directly to RNA polymerase (RNAP) at two sites ~60 Å apart. One proposal for the presence of two sites is that they have different affinities for ppGpp, expanding the dynamic range over which ppGpp acts. We show here, primarily using the Differential Radial Capillary Action of Ligand Assay (DRaCALA), that ppGpp has a similar affinity for each site, contradicting the proposal. Because the ppGpp binding sites are formed by interactions of the β' subunit of RNAP with two small protein factors, the ω subunit of RNAP which contributes to Site 1 and the transcription factor DksA which contributes to Site 2, variation in the concentrations of ω or DksA potentially could differentially regulate ppGpp occupancy of the two sites. It was shown previously that DksA varies little at different growth rates or growth phases, but little is known about variation of the ω concentration. Therefore, we raised an anti-ω antibody and performed Western blots at different times in growth and during a stringent response. We show here that ω, like DksA, changes little with growth conditions. Together, our data suggest that the two ppGpp binding sites fill in parallel, and occupancy with changing nutritional conditions is determined by variation in the ppGpp concentration, not by variation in ω or DksA.
Collapse
Affiliation(s)
| | | | | | - Richard L. Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Fung DK, Yang J, Stevenson DM, Amador-Noguez D, Wang JD. Small Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis. Front Microbiol 2020; 11:2083. [PMID: 32983059 PMCID: PMC7492591 DOI: 10.3389/fmicb.2020.02083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
(p)ppGpp is a highly conserved bacterial alarmone which regulates many aspects of cellular physiology and metabolism. In Gram-positive bacteria such as B. subtilis, cellular (p)ppGpp level is determined by the bifunctional (p)ppGpp synthetase/hydrolase RelA and two small alarmone synthetases (SASs) YjbM (SasB) and YwaC (SasA). However, it is less clear whether these enzymes are also involved in regulation of alarmones outside of (p)ppGpp. Here we developed an improved LC-MS-based method to detect a broad spectrum of metabolites and alarmones from bacterial cultures with high efficiency. By characterizing the metabolomic signatures of SasA expressing B. subtilis, we identified strong accumulation of the (p)ppGpp analog pGpp, as well as accumulation of ppApp and AppppA. The induced accumulation of these alarmones is abolished in the catalytically dead sasA mutant, suggesting that it is a consequence of SasA synthetase activity. In addition, we also identified depletion of specific purine nucleotides and their precursors including IMP precursors FGAR, SAICAR and AICAR (ZMP), as well as GTP and GDP. Furthermore, we also revealed depletion of multiple pyrimidine precursors such as orotate and orotidine 5′-phosphate. Taken together, our work shows that induction of a single (p)ppGpp synthetase can cause concomitant accumulation and potential regulatory interplay of multiple alarmones.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Anderson BW, Liu K, Wolak C, Dubiel K, She F, Satyshur KA, Keck JL, Wang JD. Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. eLife 2019; 8:e47534. [PMID: 31552824 PMCID: PMC6783271 DOI: 10.7554/elife.47534] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
The alarmone (p)ppGpp regulates diverse targets, yet its target specificity and evolution remain poorly understood. Here, we elucidate the mechanism by which basal (p)ppGpp inhibits the purine salvage enzyme HPRT by sharing a conserved motif with its substrate PRPP. Intriguingly, HPRT regulation by (p)ppGpp varies across organisms and correlates with HPRT oligomeric forms. (p)ppGpp-sensitive HPRT exists as a PRPP-bound dimer or an apo- and (p)ppGpp-bound tetramer, where a dimer-dimer interface triggers allosteric structural rearrangements to enhance (p)ppGpp inhibition. Loss of this oligomeric interface results in weakened (p)ppGpp regulation. Our results reveal an evolutionary principle whereby protein oligomerization allows evolutionary change to accumulate away from a conserved binding pocket to allosterically alter specificity of ligand interaction. This principle also explains how another (p)ppGpp target GMK is variably regulated across species. Since most ligands bind near protein interfaces, we propose that this principle extends to many other protein-ligand interactions.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Kuanqing Liu
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Christine Wolak
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Katarzyna Dubiel
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Fukang She
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Kenneth A Satyshur
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - James L Keck
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Jue D Wang
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| |
Collapse
|
10
|
Kushwaha GS, Oyeyemi BF, Bhavesh NS. Stringent response protein as a potential target to intervene persistent bacterial infection. Biochimie 2019; 165:67-75. [PMID: 31302165 DOI: 10.1016/j.biochi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
More than half of the world's population is infected with persistent bacterial infections, consequently, persisters are gradually becoming a major public health concern. During the persistent phase, bacterial pathogens deploy many regulatory strategies to compensate unfavorable host environmental conditions. The stringent response is one of such gene regulatory mechanisms which is stimulated by nutrient starvation. It is regulated by the synthesis of highly phosphorylated signaling nucleotides, (p)ppGpp or alarmone. (p)ppGpp is synthesized by ppGpp synthetases, and these proteins are classified as RelA/SpoT homolog (RSH) proteins. Subsequently, (p)ppGpp modulate several molecular and biochemical processes ranging from transcription to metabolism. Imperativeness of (p)ppGpp synthetases has been investigated by numerous approaches including microbiology and animal studies, thereby establishing that Rel enzyme deleted strains of pathogenic bacteria were unable to transform in persister form. In this review, we summarize recent findings to corroborate the rationality to consider (p)ppGpp synthetase as a potential target in discovering a novel class of antimicrobial agents to combat persistent infections. Moreover, inhibition studies on Mycobacterium tuberculosis (p)ppGpp synthetase shows that these inhibitors prevent dormant state transition and biofilm formation. Also, we have highlighted the structural biology of (p)ppGpp synthetases, which may provide significant information that could be used in structure-based inhibitor design.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Zhang YE, Bærentsen RL, Fuhrer T, Sauer U, Gerdes K, Brodersen DE. (p)ppGpp Regulates a Bacterial Nucleosidase by an Allosteric Two-Domain Switch. Mol Cell 2019; 74:1239-1249.e4. [PMID: 31023582 DOI: 10.1016/j.molcel.2019.03.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.
Collapse
Affiliation(s)
- Yong Everett Zhang
- Department of Biology, Centre of Excellence for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - René Lysdal Bærentsen
- Department of Molecular Biology and Genetics, Centre of Excellence for Bacterial Stress Response and Persistence (BASP), Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Fuhrer
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Kenn Gerdes
- Department of Biology, Centre of Excellence for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ditlev Egeskov Brodersen
- Department of Molecular Biology and Genetics, Centre of Excellence for Bacterial Stress Response and Persistence (BASP), Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Interaction studies on bacterial stringent response protein RelA with uncharged tRNA provide evidence for its prerequisite complex for ribosome binding. Curr Genet 2019; 65:1173-1184. [PMID: 30968189 DOI: 10.1007/s00294-019-00966-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The bacterial stringent response is regulated by the synthesis of (p)ppGpp which is mediated by RelA in a complex with uncharged tRNA and ribosome. We intended to probe RelA-uncharged tRNA interactions off the ribosome to understand the sequential activation mechanism of RelA. Stringent response is a key regulatory pleiotropic mechanism which allows bacteria to survive in unfavorable conditions. Since the discovery of RelA, it has been believed that it is activated upon binding to ribosomes which already have uncharged tRNA on acceptor site (A-site). However, uncharged tRNA occupied in the A-site of the ribosome prior to RelA binding could not be observed; therefore, recently an alternate model for RelA activation has been proposed in which RelA first binds to uncharged tRNA and then RelA-uncharged tRNA complex is loaded on to the ribosome to synthesize (p)ppGpp. To explore the alternate hypothesis, we report here the in vitro binding of uncharged tRNA to RelA in the absence of ribosome using formaldehyde cross-linking, fluorescence spectroscopy, surface plasmon resonance, size-exclusion chromatography, and hydrogen-deuterium exchange mass spectrometry. Altogether, our results clearly indicate binding between RelA and uncharged tRNA without the involvement of ribosome. Moreover, we have analyzed their binding kinetics and mapping of tRNA-interacting regions of RelA structure. We have also co-purified TGS domain in complex with tRNA to further establish in vivo RelA-tRNA binding. We have observed that TGS domain recognizes all types of uncharged tRNA similar to EF-Tu and tRNA interactions. Altogether, our results demonstrate the complex formation between RelA and uncharged tRNA that may be loaded to the ribosome for (p)ppGpp synthesis.
Collapse
|
13
|
Prusa J, Zhu DX, Stallings CL. The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:5035815. [PMID: 29947752 PMCID: PMC7191866 DOI: 10.1093/femspd/fty054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
During infection, the host restrains Mycobacterium tuberculosis (Mtb) from proliferating by imposing an arsenal of stresses. Despite this onslaught of attacks, Mtb is able to persist for the lifetime of the host, indicating that this pathogen has substantial molecular mechanisms to resist host-inflicted damage. The stringent response is a conserved global stress response in bacteria that involves the production of the hyperphosphorylated guanine nucleotides ppGpp and pppGpp (collectively called (p)ppGpp). (p)ppGpp then regulates a number of cellular processes to adjust the physiology of the bacteria to promote survival in different environments. Survival in the presence of host-generated stresses is an essential quality of successful pathogens, and the stringent response is critical for the intracellular survival of a number of pathogenic bacteria. In addition, the stringent response has been linked to virulence gene expression, persistence, latency and drug tolerance. In Mtb, (p)ppGpp synthesis is required for survival in low nutrient conditions, long term culture and during chronic infection in animal models, all indicative of a strict requirement for (p)ppGpp during exposure to stresses associated with infection. In this review we discuss (p)ppGpp metabolism and how this functions as a critical regulator of Mtb virulence.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
14
|
Abstract
The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli. We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes. In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coli. Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.
Collapse
|
15
|
Pontes MH, Groisman EA. Protein synthesis controls phosphate homeostasis. Genes Dev 2018; 32:79-92. [PMID: 29437726 PMCID: PMC5828397 DOI: 10.1101/gad.309245.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
In this study, Pontes et al. show that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu in yeast and bacteria. Their findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium, this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg2+), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg2+ promotes an uptake in Mg2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae. Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| |
Collapse
|
16
|
Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, Brodersen DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem 2018; 293:3254-3264. [PMID: 29326162 DOI: 10.1074/jbc.ra117.001374] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3'-diphosphate ((p)ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multidomain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, RelQ (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major functional states, pre-catalytic (bound to GTP and the non-hydrolyzable ATP analogue, adenosine 5'-(α,β-methylene)triphosphate (AMP-CPP)), and post-catalytic (bound to pppGpp). We observed that RelP also forms a tetramer, but unlike RelQ (SAS1), it is strongly inhibited by both pppGpp and ppGpp and is insensitive to inhibition by RNA. We also identified putative metal ion-binding sites at the subunit interfaces that were consistent with the observed activation of the enzyme by Zn2+ ions. The structures reported here reveal the details of the catalytic mechanism of SAS enzymes and provide a molecular basis for understanding differential regulation of SAS enzymes in Firmicute bacteria.
Collapse
Affiliation(s)
- Melek Cemre Manav
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Jelena Beljantseva
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin S Bojer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Tanel Tenson
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Hanne Ingmer
- the Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark, and
| | - Vasili Hauryliuk
- the University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,the Department of Molecular Biology and.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Ditlev E Brodersen
- From the Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
17
|
From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. J Bacteriol 2015; 197:2908-19. [PMID: 26124242 DOI: 10.1128/jb.00324-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. In Enterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEf synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEf also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEf was activated only by ppGpp. Furthermore, enzymatic activity of RelQEf is insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp. IMPORTANCE Accumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ of Enterococcus faecalis (RelQEf), we found that, in addition to (p)ppGpp, RelQEf is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEf and suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.
Collapse
|
18
|
Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 2015; 13:298-309. [PMID: 25853779 PMCID: PMC4659695 DOI: 10.1038/nrmicro3448] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp) are involved in regulating growth and several different stress responses in bacteria. In recent years, substantial progress has been made in our understanding of the molecular mechanisms of (p)ppGpp metabolism and (p)ppGpp-mediated regulation. In this Review, we summarize these recent insights, with a focus on the molecular mechanisms governing the activity of the RelA/SpoT homologue (RSH) proteins, which are key players that regulate the cellular levels of (p)ppGpp. We also discuss the structural basis of transcriptional regulation by (p)ppGpp and the role of (p)ppGpp in GTP metabolism and in the emergence of bacterial persisters.
Collapse
Affiliation(s)
- Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Gemma C. Atkinson
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Kenn Gerdes
- Department of Biology, Section for Molecular Microbiology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
19
|
Ryssel M, Hviid AMM, Dawish MS, Haaber J, Hammer K, Martinussen J, Kilstrup M. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity. MICROBIOLOGY-SGM 2014; 160:2551-2559. [PMID: 25143058 DOI: 10.1099/mic.0.082586-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the metabolic basis behind this multi-stress-resistance phenotype in Lactococcus lactis subsp. cremoris MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that L. lactis MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate to the acid-stress medium increased the stress sensitivity of L. lactis MG1363. It is also shown that high intracellular guanine nucleotide pools confer increased sensitivity to high temperatures, thus showing that it is indeed a multi-stress phenotype. Our analysis suggests that an increased level of guanine nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that L. lactis MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide pools renders the bacterium sensitive to environmental stresses.
Collapse
Affiliation(s)
- Mia Ryssel
- Department of Food Science, Food Microbiology, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne-Mette Meisner Hviid
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mohamed S Dawish
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jakob Haaber
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Karin Hammer
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jan Martinussen
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mogens Kilstrup
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Carneiro S, Villas-Bôas SG, Ferreira EC, Rocha I. Influence of the RelA Activity on E. coli Metabolism by Metabolite Profiling of Glucose-Limited Chemostat Cultures. Metabolites 2012; 2:717-32. [PMID: 24957759 PMCID: PMC3901239 DOI: 10.3390/metabo2040717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/28/2012] [Indexed: 11/24/2022] Open
Abstract
Metabolite profiling of E. coli W3110 and the isogenic ΔrelA mutant cells was used to characterize the RelA-dependent stringent control of metabolism under different growth conditions. Metabolic profiles were obtained by gas chromatography–mass spectrometry (GC-MS) analysis and revealed significant differences between E. coli strains grown at different conditions. Major differences between the two strains were assessed in the levels of amino acids and fatty acids and their precursor metabolites, especially when growing at the lower dilution rates, demonstrating differences in their metabolic behavior. Despite the fatty acid biosynthesis being the most affected due to the lack of the RelA activity, other metabolic pathways involving succinate, lactate and threonine were also affected. Overall, metabolite profiles indicate that under nutrient-limiting conditions the RelA-dependent stringent response may be elicited and promotes key changes in the E. coli metabolism.
Collapse
Affiliation(s)
- Sónia Carneiro
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Silas G Villas-Bôas
- Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand.
| | - Eugénio C Ferreira
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Isabel Rocha
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
21
|
Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 2012; 85:1029-43. [PMID: 22812515 DOI: 10.1111/j.1365-2958.2012.08177.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
22
|
Dissecting complex metabolic integration provides direct genetic evidence for CodY activation by guanine nucleotides. J Bacteriol 2011; 193:5637-48. [PMID: 21856856 DOI: 10.1128/jb.05510-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global regulator CodY controls the expression of dozens of metabolic genes and genes mediating adaptation to nutrient availability in many low-G+C Gram-positive bacteria. Branched-chain amino acids L-isoleucine, L-leucine, and L-valine (ILV) activate CodY both in vivo and in vitro, and genes that direct their synthesis (ilv, ybgE, and ywaA) are highly repressed by CodY, creating a potential negative feedback loop. The nucleoside triphosphate GTP also activates CodY in vitro, but the evidence for activation by GTP in vivo is limited and indirect. We constructed a Bacillus subtilis strain (ybgE bcd ywaA) that is unable to convert branched-chain α-keto acids to ILV or to use ILV as a precursor for branched-chain fatty acid synthesis. Unexpectedly, the strain was not viable on rich medium. Supplementing rich medium with short, branched-chain fatty acids or derepressing expression of genes for de novo ILV synthesis bypassed the original lethality, restoring growth and showing that the lack of viability was due to insufficient intracellular production of the precursors of branched-chain fatty acids. Spontaneous extragenic suppressor mutants that arose in the triple mutant population proved to have additional mutations in guaA or guaB or codY. Expression of ILV biosynthetic genes in codY mutants was increased. The gua mutations caused guanine/guanosine auxotrophy and led to partial derepression of direct CodY-repressed targets, including ILV biosynthetic genes, under conditions similar to those that caused the original lethality. We conclude that a guanine derivative, most likely GTP, controls CodY activity in vivo.
Collapse
|
23
|
Ooga T, Ohashi Y, Kuramitsu S, Koyama Y, Tomita M, Soga T, Masui R. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J Biol Chem 2009; 284:15549-56. [PMID: 19346251 DOI: 10.1074/jbc.m900582200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major bacterial alarmone, guanosine 3',5'-bispyrophosphate (ppGpp), controls cellular growth under conditions of nutritional starvation. For most bacteria, intracellular ppGpp levels are tightly controlled by the synthesis/degradation cycle of RelA and SpoT activities. This study shows a novel ppGpp regulatory protein governing the cellular growth of Thermus thermophilus, Ndx8, a member of the Nudix pyrophosphatase family that degrades ppGpp to yield guanosine 3',5'-bisphosphate. The ndx8-null mutant strain exhibited early stage growth arrest accompanied by the stationary phase-specific morphologies and global transcriptional modulation under nutritionally defined conditions. Several possible substrate compounds of Ndx8, which specifically accumulated in the ndx8 mutant cells, were identified by employing a capillary electrophoresis time-of-flight mass spectrometry-based metabolomics approach. Among them, the hydrolytic activity of Ndx8 for ppGpp was significant not only in vitro but also in vivo. Finally, the elimination of ppGpp synthetic activity suppressed the observed phenotype of the ndx8 mutation, suggesting that the function of Ndx8 as a growth regulator is involved in ppGpp accumulation, which is thought to act as a trigger of the growth phase transition. These results suggest a novel mechanism of ppGpp-mediated growth control by the functional relay between Ndx8 and SpoT activity as ppGpp scavengers.
Collapse
Affiliation(s)
- Takushi Ooga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Cell 2004; 117:57-68. [PMID: 15066282 DOI: 10.1016/s0092-8674(04)00260-0] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/13/2004] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
Enzymes of the Rel/Spo family enable bacteria to survive prolonged periods of nutrient limitation by producing an intracellular signaling alarmone, (p)ppGpp, which triggers the so-called stringent response. Both the synthesis of (p)ppGpp from ATP and GDP(GTP), and its hydrolysis to GDP(GTP) and pyrophosphate, are catalyzed by Rel/Spo proteins. The 2.1 A crystal structure of the bifunctional catalytic fragment of the Rel/Spo homolog from Streptococcus dysgalactiae subsp. equisimilis, Rel(Seq), reveals two conformations of the enzyme corresponding to known reciprocal activity states: (p)ppGpp-hydrolase-OFF/(p)ppGpp-synthetase-ON and hydrolase-ON/synthetase-OFF. The hydrolase and synthetase domains bear remarkable similarities to the catalytic domains of the cyclic phosphodiesterase and nucleotidyltransferase superfamilies, respectively. The active sites, separated by more than 30 A, contain bound nucleotides including an unusual (p)ppGpp derivative, GDP-2':3'-cyclic monophosphate. Reciprocal regulation of the antagonistic catalytic activities, suggested by the structure, is supported by mutagenesis experiments and appears to involve ligand-induced signal transmission between the two active sites.
Collapse
Affiliation(s)
- Tanis Hogg
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Varcamonti M, Graziano MR, Pezzopane R, Naclerio G, Arsenijevic S, De Felice M. Impaired temperature stress response of a Streptococcus thermophilus deoD mutant. Appl Environ Microbiol 2003; 69:1287-9. [PMID: 12571059 PMCID: PMC143660 DOI: 10.1128/aem.69.2.1287-1289.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20 degrees C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.
Collapse
Affiliation(s)
- Mario Varcamonti
- Section of Microbiology, Department of General and Environmental Physiology, University Federico II, 80134 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Iancu CV, Borza T, Fromm HJ, Honzatko RB. Feedback inhibition and product complexes of recombinant mouse muscle adenylosuccinate synthetase. J Biol Chem 2002; 277:40536-43. [PMID: 12186864 DOI: 10.1074/jbc.m204952200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylosuccinate synthetase governs the committed step of AMP biosynthesis, the generation of 6-phosphoryl-IMP from GTP and IMP followed by the formation of adenylosuccinate from 6-phosphoryl-IMP and l-aspartate. The enzyme is subject to feedback inhibition by AMP and adenylosuccinate, but crystallographic complexes of the mouse muscle synthetase presented here infer mechanisms of inhibition that involve potentially synergistic ligand combinations. AMP alone adopts the productive binding mode of IMP and yet stabilizes the active site in a conformation that favors the binding of Mg(2+)-IMP to the GTP pocket. On the other hand, AMP, in the presence of GDP, orthophosphate, and Mg(2+), adopts the binding mode of adenylosuccinate. Depending on circumstances then, AMP behaves as an analogue of IMP or as an analogue of adenylosuccinate. The complex of adenylosuccinate.GDP.Mg(2+).sulfate, the first structure of an adenylosuccinate-bound synthetase, reveals significant geometric distortions and tight nonbonded contacts relevant to the proposed catalytic mechanism. Adenylosuccinate forms from 6-phosphoryl-IMP and l-aspartate by the movement of the purine ring into the alpha-amino group of l-aspartate.
Collapse
Affiliation(s)
- Cristina V Iancu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
27
|
Hou Z, Cashel M, Fromm HJ, Honzatko RB. Effectors of the stringent response target the active site of Escherichia coli adenylosuccinate synthetase. J Biol Chem 1999; 274:17505-10. [PMID: 10364182 DOI: 10.1074/jbc.274.25.17505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a pleiotropic effector of the stringent response, potently inhibits adenylosuccinate synthetase from Escherichia coli as an allosteric effector and/or as a competitive inhibitor with respect to GTP. Crystals of the synthetase grown in the presence of IMP, hadacidin, NO3-, and Mg2+, then soaked with ppGpp, reveal electron density at the GTP pocket which is consistent with guanosine 5'-diphosphate 2':3'-cyclic monophosphate. Unlike ligand complexes of the synthetase involving IMP and GDP, the coordination of Mg2+ in this complex is octahedral with the side chain of Asp13 in the inner sphere of the cation. The cyclic phosphoryl group interacts directly with the side chain of Lys49 and indirectly through bridging water molecules with the side chains of Asn295 and Arg305. The synthetase either directly facilitates the formation of the cyclic nucleotide or scavenges trace amounts of the cyclic nucleotide from solution. Regardless of its mode of generation, the cyclic nucleotide binds far more tightly to the active site than does ppGpp. Conceivably, synthetase activity in vivo during the stringent response may be sensitive to the relative concentrations of several effectors, which together exercise precise control over the de novo synthesis of AMP.
Collapse
Affiliation(s)
- Z Hou
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|