1
|
Witecka A, Kwiatkowski S, Ishikawa T, Drozak J. The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase. Life (Basel) 2021; 11:1040. [PMID: 34685411 PMCID: PMC8537074 DOI: 10.3390/life11101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| |
Collapse
|
2
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
3
|
Kwiatkowski S, Drozak J. Protein Histidine Methylation. Curr Protein Pept Sci 2021; 21:675-689. [PMID: 32188384 DOI: 10.2174/1389203721666200318161330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023]
Abstract
Protein histidine methylation is a rarely studied posttranslational modification in eukaryotes. Although the presence of N-methylhistidine was demonstrated in actin in the early 1960s, so far, only a limited number of proteins containing N-methylhistidine have been reported, including S100A9, myosin, skeletal muscle myosin light chain kinase (MLCK 2), and ribosomal protein Rpl3. Furthermore, the role of histidine methylation in the functioning of the protein and in cell physiology remains unclear due to a shortage of studies focusing on this topic. However, the molecular identification of the first two distinct histidine-specific protein methyltransferases has been established in yeast (Hpm1) and in metazoan species (actin-histidine N-methyltransferase), giving new insights into the phenomenon of protein methylation at histidine sites. As a result, we are now beginning to recognize protein histidine methylation as an important regulatory mechanism of protein functioning whose loss may have deleterious consequences in both cells and in organisms. In this review, we aim to summarize the recent advances in the understanding of the chemical, enzymological, and physiological aspects of protein histidine methylation.
Collapse
Affiliation(s)
- Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Guo Q, Liao S, Kwiatkowski S, Tomaka W, Yu H, Wu G, Tu X, Min J, Drozak J, Xu C. Structural insights into SETD3-mediated histidine methylation on β-actin. eLife 2019; 8:43676. [PMID: 30785395 PMCID: PMC6400499 DOI: 10.7554/elife.43676] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
SETD3 is a member of the SET (Su(var)3–9, Enhancer of zeste, and Trithorax) domain protein superfamily and plays important roles in hypoxic pulmonary hypertension, muscle differentiation, and carcinogenesis. Previously, we identified SETD3 as the actin-specific methyltransferase that methylates the N3 of His73 on β-actin (Kwiatkowski et al., 2018). Here, we present two structures of S-adenosyl-L-homocysteine-bound SETD3 in complex with either an unmodified β-actin peptide or its His-methylated variant. Structural analyses, supported by biochemical experiments and enzyme activity assays, indicate that the recognition and methylation of β-actin by SETD3 are highly sequence specific, and that both SETD3 and β-actin adopt pronounced conformational changes upon binding to each other. In conclusion, this study is the first to show a catalytic mechanism of SETD3-mediated histidine methylation on β-actin, which not only throws light on the protein histidine methylation phenomenon but also facilitates the design of small molecule inhibitors of SETD3.
Collapse
Affiliation(s)
- Qiong Guo
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shanhui Liao
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Weronika Tomaka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Huijuan Yu
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Gao Wu
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoming Tu
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Chao Xu
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Kwiatkowski S, Seliga AK, Vertommen D, Terreri M, Ishikawa T, Grabowska I, Tiebe M, Teleman AA, Jagielski AK, Veiga-da-Cunha M, Drozak J. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife 2018; 7:37921. [PMID: 30526847 PMCID: PMC6289574 DOI: 10.7554/elife.37921] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including β-actin as an essential example. The evolutionary conserved methylation of β-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated β-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at β-actin H73 in vivo, whereas β-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.
Collapse
Affiliation(s)
- Sebastian Kwiatkowski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka K Seliga
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marianna Terreri
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Adam K Jagielski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Veiga-da-Cunha
- Metabolic Research Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Kim JH, Lee YG, Yoo S, Oh J, Jeong D, Song WK, Yoo BC, Rhee MH, Park J, Cha SH, Hong S, Cho JY. Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde. Biochem Pharmacol 2013; 85:1042-56. [DOI: 10.1016/j.bcp.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 01/06/2023]
|
7
|
Abstract
Many of the best-studied actin regulatory proteins use non-covalent means to modulate the properties of actin. Yet, actin is also susceptible to covalent modifications of its amino acids. Recent work is increasingly revealing that actin processing and its covalent modifications regulate important cellular events. In addition, numerous pathogens express enzymes that specifically use actin as a substrate to regulate their hosts' cells. Actin post-translational alterations have been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight specific co-translational and post-translational modifications of actin and discuss the current understanding of the role that these modifications play in regulating actin.
Collapse
Affiliation(s)
- Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
8
|
Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 2010; 285:37598-606. [PMID: 20864530 DOI: 10.1074/jbc.m110.170787] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Raghavan M, Lindberg U, Schutt C. The use of alternative substrates in the characterization of actin-methylating and carnosine-methylating enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:311-8. [PMID: 1446680 DOI: 10.1111/j.1432-1033.1992.tb17423.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Actin isolated from nearly every eukaryotic species contains approximately 1 mol 3-methylhistidine/mol protein. His73 in actin has been shown, by protein sequencing, to be the site of methylation. The methylation occurs enzymically and post-translationally. A rabbit skeletal muscle myofibrillary fraction has previously been shown to contain a histidine methyltransferase activity that is actin specific. Detailed study of this enzyme has been hampered by lack of a suitable substrate assay. Naturally occurring actins are poor substrates for the enzyme, presumably due to prexistent methylation at His73. In this study, two potential alternative substrates have been investigated. These are a chicken beta-actin expressed in Escherichia coli as a fusion protein with 80 amino acids of an influenza protein, NS1, and a synthetic peptide, Tyr-Pro-Ile-Glu-His-Gly-Ile-Ile-Thr, corresponding to residues 69-77 of actin. Both substrates were covalently methylated at histidine residues in the presence of S-adenosylmethionine and partially purified enzyme fractions from rabbit muscle. In methylation experiments employing the fusion actin in the form of inclusion bodies, 3-methylhistidine is the major product, as is the case when soluble muscle or non-muscle actin is used. However, for the synthetic peptide, the methylated product primarily contained 1-methylhistidine and only a small amount of the isomeric 3-methylhistidine. Further investigations revealed that the peptide was recognized by carnosine N-methyltransferase, another histidine methyltransferase found in muscle tissue. Carnosine N-methyltransferase appears to copurify with the actin-methylating enzyme in preliminary fractionation experiments. Separation of the two methyltransferase activities is described.
Collapse
Affiliation(s)
- M Raghavan
- Department of Chemistry, Princeton University
| | | | | |
Collapse
|
10
|
Raghavan M, Smith CK, Schutt CE. Analytical determination of methylated histidine in proteins: actin methylation. Anal Biochem 1989; 178:194-7. [PMID: 2729572 DOI: 10.1016/0003-2697(89)90378-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The methylation of histidine in actin from various muscle and nonmuscle sources has been studied by formation of phenylthiocarbamyl derivatives and subsequent reverse-phase high-pressure liquid chromatographic separation and analysis of actin hydrolyzates. All the actin species examined were found to contain 3-methylhistidine. This method has also been used in assays for the enzyme(s) responsible for methylation of rabbit skeletal muscle actin and to investigate the formation of other methylated residues in vitro. 3-Methyl-histidine is the major methylation product in this in vitro reaction.
Collapse
Affiliation(s)
- M Raghavan
- Department of Chemistry, Princeton University, New Jersey 08544
| | | | | |
Collapse
|
11
|
Webb EC. Enzyme nomenclature. Recommendations 1984. Supplement 2: corrections and additions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:489-533. [PMID: 2920724 DOI: 10.1111/j.1432-1033.1989.tb14579.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- E C Webb
- Nomenclature Committe of the International Union od Biochemistry (NC-IUB)
| |
Collapse
|
12
|
Paik WK, Lee HW, Kim S. Endogenous proteinaceous inhibitor for protein methylation reactions. Arch Pharm Res 1987. [DOI: 10.1007/bf02861913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|