1
|
Mladěnka P, Hrdina R, Hübl M, Šimůnek T. The Fate of Iron in The Organism and Its Regulatory Pathways. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Iron is an essential element involved in many life-necessary processes. Interestingly, in mammals there is no active excretion mechanism for iron. Therefore iron kinetics has to be meticulously regulated. The most important step for regulation of iron kinetics is absorption. The absorption takes place in small intestine and it is implicated that it requires several proteins. Iron is then released from enterocytes into the circulation and delivered to the cells. Iron movement inside the cell is only partially elucidated and its traffic to mitochondia is not known. Surprisingly, the regulation of various proteins related to iron kinetics and energy metabolism at the molecular level is better described. On contrary, the complex control of iron absorption cannot be fully explicated with present knowledge.
Collapse
|
2
|
Löw H, Crane FL, Morré DJ. Putting together a plasma membrane NADH oxidase: A tale of three laboratories. Int J Biochem Cell Biol 2012; 44:1834-8. [DOI: 10.1016/j.biocel.2012.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
|
3
|
Crane FL, Low H. Reactive oxygen species generation at the plasma membrane for antibody control. Autoimmun Rev 2008; 7:518-22. [PMID: 18625439 DOI: 10.1016/j.autrev.2008.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Generation of reactive oxygen species (ROS) at the plasma membrane can be a vehicle for oxidative unmasking or masking of auto antibodies in a tissue selective and controlled way. There are seven related NADPH oxidases (NOX 1-5, DuoNOX 1,2) which can be activated in various ways to produce superoxide and hydrogen peroxide at the plasma membrane. There is also a plasma membrane NADH oxidase which is under different control. ROS can also be produced by mitochondria or cytosolic oxidases under special conditions. The ROS generation provides oxidant for thiol oxidation or peroxynitrite formation which can be a basis for antibody modification. The specific controls of the oxidases in different tissues allow a basis for localized autoantibody modification in response to stress or environment.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Science, Purdue University, W. Lafayette, IN, USA.
| | | |
Collapse
|
4
|
Lenaz G, Paolucci U, Fato R, D'Aurelio M, Parenti Castelli G, Sgarbi G, Biagini G, Ragni L, Salardi S, Cacciari E. Enhanced activity of the plasma membrane oxidoreductase in circulating lymphocytes from insulin-dependent diabetes mellitus patients. Biochem Biophys Res Commun 2002; 290:1589-92. [PMID: 11820804 DOI: 10.1006/bbrc.2002.6392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating human lymphocytes contain a transmembrane oxidoreductase (PMOR) capable of reducing dichlorophenol indophenol (DCIP) by endogenous reductants, presumably NADH. Membranes from lymphocytes obtained from buffy coats contain a NADH DCIP reductase having a K(m) of about 1 microM and almost insensible to dicoumarol. The PMOR of lymphocytes from insulin-dependent diabetic patients is higher than that from age-matched controls and, in addition, has a dicoumarol-sensitive component, lacking in most controls, presumably due to membrane association of DT-diaphorase. The increase of PMOR in diabetes is likely due to overexpression of the enzyme, in view of the very low K(m) for NADH indicating that, in intact cells, the enzyme is practically saturated with the reductant substrate.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, Bologna 40126, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Iron homeostasis is maintained by regulating its absorption: Under conditions of deficiency, assimilation is enhanced but iron uptake is otherwise limited to prevent toxicity due to overload. Iron deficiency remains the most important micronutrient deficiency worldwide, but increasing awareness of the genetic basis for iron-loading diseases points to iron overload as a major public health issue as well. Recent identification of mutant alleles causing iron uptake disorders in mice and humans provides new insights into the mechanisms involved in iron transport and its regulation. This article summarizes these discoveries and discusses their impact on our current understanding of iron transport and its regulation.
Collapse
Affiliation(s)
- M Wessling-Resnick
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
6
|
Brczi A, Mller IM. NADH-Monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. PLANT PHYSIOLOGY 1998; 116:1029-36. [PMID: 9501135 PMCID: PMC35072 DOI: 10.1104/pp.116.3.1029] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1997] [Accepted: 11/13/1997] [Indexed: 05/18/2023]
Abstract
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.
Collapse
|
7
|
Goldenberg HA. Regulation of mammalian iron metabolism: current state and need for further knowledge. Crit Rev Clin Lab Sci 1998; 34:529-72. [PMID: 9439884 DOI: 10.3109/10408369709006425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Due to its character as an essential element for all forms of life, the biochemistry and physiology of iron has attracted very intensive interest for many decades. In more recent years, the ways that iron metabolism is regulated in mammalian and human organisms have been clarified, and many aspects of iron metabolism have been reviewed. In this article, some newer aspects concerning absorption and intracellular regulation of iron concentration are considered. These include a sorting of possible models for intestinal iron absorption, a description of ways for membrane passage of iron after release from transferrin during receptor-mediated endocytosis, a consideration of possible mechanisms for non-transferrin bound iron uptake and its regulation, and a review of recent knowledge on the properties of iron regulatory proteins and on regulation of iron metabolism by these proteins, changes of their own properties by non-iron-mediated influences, and regulatory events not mediated by these proteins. This somewhat heterogeneous collection of themes is a consequence of the intention to avoid repetition of the many aforementioned reviews already existing and to concentrate on newer findings generated within the last couple of years.
Collapse
Affiliation(s)
- H A Goldenberg
- Department of Medical Chemistry, University of Vienna, Austria
| |
Collapse
|
8
|
Vaillant F, Larm JA, McMullen GL, Wolvetang EJ, Lawen A. Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators. J Bioenerg Biomembr 1996; 28:531-40. [PMID: 8953385 DOI: 10.1007/bf02110443] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the presence of effectors variations in the two recognized activities of the plasma membrane NADH-oxidoreductase system were studied in separate, specific in vitro assays. We report here that ubiquinone analogues that contain a short, less hydrophobic side chain than coenzyme Q-10 dramatically stimulate the NADH-oxidase activity of isolated rat liver plasma membranes whereas they show no effect on the reductase activity of isolated membranes. If measured in assays of the NADH:ferricyanide reductase of living cultured cells these compounds have only a limited effect; the oxidase activity of whole cells is not measurable in our hands. We have furthermore identified selective inhibitors of both enzyme activities. In particular, the NADH-oxidase activity can be significantly inhibited by structural analogues of ubiquinone, such as capsaicin and resiniferatoxin. The NADH:ferricyanide reductase, on the other hand, is particularly sensitive to pCMBS, indicating the presence of a sulfhydryl group of groups at its active site. The identification of these specific effectors of the different enzyme activities of the PMOR yields further insights into the function of this system.
Collapse
Affiliation(s)
- F Vaillant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
9
|
Jordan I, Kaplan J. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J 1994; 302 ( Pt 3):875-9. [PMID: 7945215 PMCID: PMC1137312 DOI: 10.1042/bj3020875] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian cells accumulate iron from ferric citrate or ferric nitrilotriacetate through the activity of a transferrin-independent iron transport system [Sturrock, Alexander, Lamb, Craven and Kaplan (1990) J. Biol. Chem. 265, 3139-3145]. The uptake system might recognize and transport ferric-anion complexes, or cells may reduce ferric iron at the surface and then transport ferrous iron. To distinguish between these possibilities we exposed cells to either [59Fe]ferric citrate or ferric [14C]citrate and determined whether accumulation of iron was accompanied by the obligatory accumulation of citrate. In HeLa cells and human skin fibroblasts the rate of accumulation of iron was three to five times greater than that of citrate. Incubation of fibroblasts with ferric citrate or ferric ammonium citrate resulted in an enhanced accumulation of iron and citrate; the molar ratio of accumulation approaching unity. A similar rate of citrate accumulation, however, was observed when ferric citrate-incubated cells were exposed to [14C]citrate alone. Further studies demonstrated the independence of iron and citrate accumulation: addition of unlabelled citrate to cells decreased the uptake of labelled citrate without affecting the accumulation of 59Fe; iron uptake was decreased by the addition of ferrous chelators whereas the uptake of citrate was unaffected; reduction of ferric iron by ascorbate increased the uptake of iron but had no effect on the uptake of citrate. When HeLa cells were depleted of calcium, iron uptake decreased, but there was little effect on citrate uptake. These results indicate that transport of iron does not require the obligatory transport of citrate and vice versa. The mammalian transferrin-independent iron transport system appears functionally similar to iron transport systems in both the bacterial and plant kingdoms which require the activities of both a surface reductase and a ferrous metal transporter.
Collapse
Affiliation(s)
- I Jordan
- Department of Pathology, University of Utah College of Medicine, Salt Lake City 84102
| | | |
Collapse
|
10
|
Sun IL, Crane FL, Löw H. Bombesin stimulates transplasma-membrane electron transport by Swiss 3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:206-10. [PMID: 8148400 DOI: 10.1016/0167-4889(94)90015-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bombesin, a mitogenic neuropeptide, stimulates transplasmalemma reduction of diferric transferrin or ferricyanide by Swiss 3T3 cells. The stimulation of diferric transferrin reduction occurs in the range of bombesin concentrations that stimulate proliferation of Swiss 3T3 cells. Diferric transferrin reduction by the 3T3 cells is accompanied by increased proton release from the cells and bombesin increases the differic transferrin-stimulated proton release twofold. Insulin increases the diferric transferrin reductase response and increases growth stimulation with bombesin. The effect of bombesin on the transmembrane electron transport is a new aspect of its effect on the plasma membrane in addition to increase in phosphatidylinositol turnover and protein kinase c activation. The electron transport can provide an independent mechanism of activation of the Na+/H+ exchange or it can change the redox state of pyridine nucleotide in the cytoplasm.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392
| | | | | |
Collapse
|
11
|
Affiliation(s)
- C D Cox
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242
| |
Collapse
|
12
|
Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80581-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Thaler CJ, Labarrere CA, Hunt JS, McIntyre JA, Faulk WP. Immunological studies of lactoferrin in human placentae. J Reprod Immunol 1993; 23:21-39. [PMID: 8094100 DOI: 10.1016/0165-0378(93)90024-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lactoferrin (LF) and transferrin (Trf) are glycoproteins with strong affinities for ferric ions. Human syncytiotrophoblastic membranes analyzed by enzyme linked immunosorbent assay (ELISA) and immunoblotting were negative with monoclonal and polyclonal antibodies to LF. Immunohistological studies of 35 normal placentae showed that LF was absent from the trophoblast basement membranes, stroma and fetal stem vessel endothelium, but positive cells were occasionally noted in intervillous spaces and fetal stem vessels. In contrast, many LF-positive cells were identified within areas of immunopathology identified by the presence of T cells, HLA-DR-positive macrophages and platelets. Double-antibody experiments showed that the LF-positive cells in these areas reacted with CD15 and CD16 monoclonal antibodies (mAbs), indicating that the cells were polymorphonuclear neutrophils (PMN). PMN from peripheral blood analyzed by flow cytometry and immunocytology also showed reactivities with anti-LF, CD15 and CD16 and we consistently found that circulating PMN reacted better than placental PMN with antibodies to MHC class I antigens and gp 100, (CD67), which is a neutrophil activation marker. PMN adherent within placentae had no detectable MHC class I or CD67 antigens. These findings suggest PMN adherent to placental tissues down-regulate or alter plasma membrane markers. LF appears to play a role in placental inflammation, for LF-positive cells were significantly enriched in areas of immunopathology.
Collapse
Affiliation(s)
- C J Thaler
- Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, Indianapolis 46202
| | | | | | | | | |
Collapse
|
14
|
Sizensky JA, Barabas K, Faulk WP. Characterization of the anti-cancer activity of transferrin-adriamycin conjugates. Am J Reprod Immunol 1992; 27:163-6. [PMID: 1418408 DOI: 10.1111/j.1600-0897.1992.tb00744.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The anthracycline anti-cancer drug adriamycin (Adr) was coupled to human transferrin (Trf) by using a glutaraldehyde technique. The effect of Trf-Adr conjugates and unconjugated Adr on human cells was determined by using normal peripheral blood mononuclear cells and chronic myelogenous K562 cells. Cytotoxicity was determined by using an assay that measures the conversion of a tetrazolium salt (MTT) into a purple product (formazan) by mitochondrial dehydrogenases in viable cells. We found that free Adr at a concentration of 1 x 10(-7) had little effect on K562 cells, while Trf-Adr conjugates inhibited 75% of cellular activity. When normal peripheral blood mononuclear cells were tested against Trf-Adr conjugates, the 50% inhibitory concentration was found to be 1.4-1.7 x 10(-6) M, at which concentration greater than 85% of K562 cells were inhibited. Interactions of Trf-Adr conjugates with plasma membrane energy-producing systems are the proposed mechanisms of cytotoxicity.
Collapse
Affiliation(s)
- J A Sizensky
- Center for Reproduction and Transplantation Immunology, Methodist Hospital, Indianapolis, Indiana 46202
| | | | | |
Collapse
|
15
|
Sun IL, Sun EE, Crane FL, Morré DJ, Faulk WP. Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:84-8. [PMID: 1567898 DOI: 10.1016/0005-2736(92)90165-i] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transplasma membrane electron transport from HeLa cells, measured by reduction of ferricyanide or diferric transferrin in the presence of bathophenanthroline disulfonate, is inhibited by low concentrations of adriamycin and adriamycin conjugated to diferric transferrin. Inhibition with the conjugate is observed at one-tenth the concentration required for adriamycin inhibition. The inhibitory action of the conjugate appears to be at the plasma membrane since (a) the conjugate does not transfer adriamycin to the nucleus, (b) the inhibition is observed within three minutes of addition to cells, and (c) the inhibition is observed with NADH dehydrogenase and oxidase activities of isolated plasma membranes. Cytostatic effects of the compounds on HeLa cells show the same concentration dependence as for enzyme inhibition. The adriamycin-ferric transferrin conjugate provides a more effective tool for inhibition of the plasma membrane electron transport than is given by the free drug.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|