1
|
Wang JB, Wang MD, Li EX, Dong DF. Advances and prospects of anginex as a promising anti-angiogenesis and anti-tumor agent. Peptides 2012; 38:457-62. [PMID: 22985857 DOI: 10.1016/j.peptides.2012.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/17/2023]
Abstract
Anginex, a novel artificial cytokine-like peptide (βpep-25), is designed by using basic folding principles and incorporating short sequences from the β-sheet domains of anti-angiogenic agents, including platelet factor-4 (PF4), interleukin-8 (IL-8), and bactericidal-permeability increasing protein 1 (BP1). Anginex can specially block the adhesion and migration of the angiogenically activated endothelial cells (ECs), leading to apoptosis and ultimately to the inhibition of angiogenesis and tumor growth. In vitro and in vivo studies have proved its inhibitory effects on the formation of new blood vessels and tumor growth even though the mechanism is not clear. The inhibitory effects of anginex can be enhanced when it is applied in combination with other therapies, such as chemotherapy, radiotherapy and other anti-angiogenic agents. The limitations of anginex, including poor stability, short half life, complicated synthesis and low purity, have been conquered by modifying its structure or designing novel compound anginex and recombinant anginex, which makes possible the clinical application of anginex. Here, we summarize the basic and preclinical trials of anginex and discuss the prospects of anginex in clinical application. We come to the conclusion that anginex and compound or recombinant anginex can be used as effective anti-angiogenic agents.
Collapse
Affiliation(s)
- Ju Bo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | |
Collapse
|
2
|
Dong DF, Li EX, Wang JB, Wu YY, Shi F, Guo JJ, Wu Y, Liu JP, Liu SX, Yang GX. Anti-angiogenesis and anti-tumor effects of AdNT4-anginex. Cancer Lett 2009; 285:218-24. [PMID: 19540664 DOI: 10.1016/j.canlet.2009.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
Anginex is a novel artificial peptide that can inhibit angiogenesis. AdNT4-anginex was constructed by inserting the artificial anginex gene into a recombinant adenoviral vector. We demonstrated that AdNT4-anginex inhibited migration of human endothelial cells, angiogenesis and tumor growth in in vitro and in vivo studies. Tumor growth of human H22 hepatoma in mice was inhibited after AdNT4-anginex treatment for 4 weeks, and a significant decrease in tumor size was observed as compared with the control group. Overall, these studies indicate that AdNT4-anginex is an effective anti-tumor agent, and deserves more attention and research.
Collapse
Affiliation(s)
- Dan Feng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Dings RPM, Mayo KH. A journey in structure-based drug discovery: from designed peptides to protein surface topomimetics as antibiotic and antiangiogenic agents. Acc Chem Res 2007; 40:1057-65. [PMID: 17661438 DOI: 10.1021/ar700086k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most biological events are mediated through molecular interactions by proteins, and because proteins are composed of structural units like helices, beta-sheets and turns, small peptides and peptidomimetics may be used to mimic their biological effects and even as therapeutic agents in the clinic. Here, we present a structure-based, scaffold-driven approach to design bioactive peptides and peptidomimetics. Initially, we designed a novel series of beta-sheet-forming peptides that mimic the activities of both antibiotic bacterial membrane disrupting peptides and antiangiogenic proteins. We subsequently used structure-activity relationships to reduce the design to partial peptide mimetics and then to fully nonpeptide topomimetics. Some of these agents are currently in extensive preclinical studies for further development as drug candidates against infectious disease and cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
5
|
Brandwijk RJMGE, Nesmelova I, Dings RPM, Mayo KH, Thijssen VLJL, Griffioen AW. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein. Biochem Biophys Res Commun 2005; 333:1261-8. [PMID: 15979575 DOI: 10.1016/j.bbrc.2005.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with beta-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach.
Collapse
Affiliation(s)
- Ricardo J M G E Brandwijk
- Angiogenesis Laboratory, Research Institute for Growth and Development, Department of Pathology, Maastricht University and University Hospital, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Nilsson A, Fant C, Nydén M, Holmberg K. Lipopolysaccharide removal by a peptide-functionalized surface. Colloids Surf B Biointerfaces 2005; 40:99-106. [PMID: 15642460 DOI: 10.1016/j.colsurfb.2004.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Five peptides: BPI(85-109); CAP18(106-137); endotoxin inhibitor (EI); GQ33 and GQ33C, derived from lipopolysaccharide (LPS)-binding molecules were investigated for LPS-binding ability with a view to a potential use in extracorporeal therapy. The surface plasmon resonance technique (SPR) was used to monitor the interaction between LPS in solution and the surface-immobilized peptides. The peptides were covalently bound to a model dextran surface via inherent amino groups or via terminally introduced cysteine residues. The results showed that the binding efficacy and binding stability of the peptides varied greatly. The CAP18(106-137) peptide, which exhibited the highest binding efficacy and binding stability, was also immobilized on a poly(ethylene imine)-poly(ethylene glycol) (PEI-PEG) surface through maleimide-terminal PEG. The binding efficacy of the CAP18(106-137) peptide was not significantly affected by the different immobilization methods used in the attachment to a dextran or a PEI-PEG surface. LPS bound selectively to CAP18(106-137) and showed very low unspecific binding to the PEI-PEG surface layer. The EI peptide proved to have a reasonably good binding capacity but a less stable interaction with LPS. The other peptides exhibited much poorer binding efficacy. We believe that the results presented in this work can be of practical value for the development of extracorporeal treatment of patients suffering from septic shock.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Materials and Surface Chemistry, Applied Surface Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | | | | | | |
Collapse
|
7
|
Wasiluk KR, Leslie DB, Vietzen PS, Mayo KH, Dunn DL. Structure/function studies of an endotoxin-neutralizing peptide derived from bactericidal/permeability-increasing protein. Surgery 2004; 136:253-60. [PMID: 15300188 DOI: 10.1016/j.surg.2004.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bactericidal/permeability-increasing protein, BPI, has a beta-turn with alternating cationic and hydrophobic residues in its lipopolysaccharide (endotoxin, LPS)-binding domain. A peptide, betapep25, was designed with 9 residues of the LPS-binding domain of BPI flanked by beta-turn-inducing elements. Thereafter, we sought to use single amino acid substitutions to identify residues that are important for the biological activities of betapep25. METHODS Single alanine or norleucine replacement "walkthrough" peptides based on betapep25 were generated and tested for their ability to kill P aeruginosa and to neutralize endotoxin. RESULTS Substitution of all lysines inhibited bactericidal activity. Inhibition of LPS-neutralizing activity was seen in 9 peptides in which an alanine or norleucine was substituted for each of 4 of the basic residues and 1 hydrophobic residue from the LPS-binding region of BPI and 4 hydrophobic residues from the beta-turn-inducing regions flanking the LPS-binding region on the carboxy-terminal side. Intriguingly, these last 4 substitutions resulted in peptides that exhibited increased bactericidal activity compared to betapep25. CONCLUSIONS These results demonstrate the importance of both cationic and hydrophobic amino acid residues to bactericidal and endotoxin-neutralizing activities. These perturbations of biological activity should be considered in the design of synthetic peptide endotoxin antagonists.
Collapse
Affiliation(s)
- Karen R Wasiluk
- Departments of Surgery and Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minn USA
| | | | | | | | | |
Collapse
|
8
|
Van Amersfoort ES, Van Berkel TJC, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 2003; 16:379-414. [PMID: 12857774 PMCID: PMC164216 DOI: 10.1128/cmr.16.3.379-414.2003] [Citation(s) in RCA: 500] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.
Collapse
Affiliation(s)
- Edwin S Van Amersfoort
- Division of Biopharmaceutics, Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Griffioen AW, van der Schaft DW, Barendsz-Janson AF, Cox A, Struijker Boudier HA, Hillen HF, Mayo KH. Anginex, a designed peptide that inhibits angiogenesis. Biochem J 2001; 354:233-42. [PMID: 11171099 PMCID: PMC1221648 DOI: 10.1042/0264-6021:3540233] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel beta-sheet-forming peptide 33-mers, betapep peptides, have been designed by using a combination approach employing basic folding principles and incorporating short sequences from the beta-sheet domains of anti-angiogenic proteins. One of these designed peptides (betapep-25), named anginex, was observed to be potently anti-angiogenic. Anginex specifically inhibits vascular endothelial cell proliferation and induces apoptosis in these cells, as shown by flow-cytometric detection of sub-diploid cells, TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP-nick-end labelling) analysis and cell morphology. Anginex also inhibits endothelial cell adhesion to and migration on different extracellular matrix components. Inhibition of angiogenesis in vitro is demonstrated in the sprout-formation assay and in vivo in the chick embryo chorio-allantoic membrane angiogenesis assay. Comparison of active and inactive betapep sequences allows structure-function relationships to be deduced. Five hydrophobic residues and two lysines appear to be crucial to activity. This is the first report of a designed peptide having a well-defined biological function as a novel cytokine, which may be an effective anti-angiogenic agent for therapeutic use against various pathological disorders, such as neoplasia, rheumatoid arthritis, diabetic retinopathy and restenosis.
Collapse
Affiliation(s)
- A W Griffioen
- Tumor Angiogenesis Laboratory, Department of Internal Medicine, University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Mayo KH, Haseman J, Young HC, Mayo JW. Structure-function relationships in novel peptide dodecamerswith broad-spectrum bactericidal and endotoxin-neutralizing activities. Biochem J 2000; 349 Pt 3:717-28. [PMID: 10903132 PMCID: PMC1221198 DOI: 10.1042/bj3490717] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of designed peptide 33-mers (betapep peptides) areknown to be bactericidal [Mayo, Haseman, Ilyina and Gray (1998)Biochim. Biophys. Acta 1425, 81-92]. Here dodecapeptides (SC-1-SC-8), which 'walk through' the sequence ofbetapep-25, were investigated for their ability to kill Gram-negativeand -positive bacteria and to neutralize endotoxin. SC-4 (KLFKRHLKWKI I-NH(2); the -NH(2) at the right of each sequenceindicates amidation of the C-terminal carboxylate group) is the mosteffective, more so than betapep-25, at killing Gram-negative bacteriawith nanomolar LD(50) values. Against Gram-positive bacteria,SC-4 also shows good activity with submicromolar LD(50)values. Leakage studies indicate rapid bacterial membrane permeability,with t(1/2) valuesof 10-15 min. SC-4 in the micromolar range also effectivelyneutralizes endotoxin and is not haemolytic below 10(-4)M. For all SC peptides, CD and NMR data indicate the presence of both 3(10)- and alpha-helix. For SC-4, nuclear-Overhauser-effect-based computational modelling yields an amphipathic helix with K1, K4,R5, and K8 arrayed on the same face (K is lysine, R is arginine). Activity differences among SC peptides and single-site variants of SC-4allow some structure-function relationships to be deduced. Relative to other known bactericidal peptides in the linear peptide,helix-forming category, SC-4 is the most potent broad-spectrumantibacterial identified to date. The present study contributes to thedevelopment of agents involved in combating the ever-recurring problemof drug-resistant micro-organisms.
Collapse
Affiliation(s)
- K H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics and The Biomedical Engineering Center, University of Minnesota Health Science Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
11
|
Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.1.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBactericidal/permeability-increasing protein (BPI) has been known for some time to function in killing bacteria and in neutralizing the effects of bacterial endotoxin lipopolysaccharide. In the present study, BPI is found to be a novel endogenous inhibitor of angiogenesis. Within the sub-μM range, BPI shows a concentration-dependent inhibition of endothelial cell (EC) proliferation that is mediated by cell detachment and subsequent induction of apoptosis. As measured by flow cytometric analysis of the percentage of subdiploid cells, apoptosis induction was half-maximal at about 250 nmol/L BPI. Apoptosis was confirmed by quantification of cells with nuclear fragmentation. Apoptosis was found to be EC specific. In an in vitro collagen gel-based angiogenesis assay, BPI at 1.8 μmol/L inhibited tube formation by 81% after only 24 hours. Evidence for in vivo inhibition of angiogenesis was obtained, using the chorioallantoic membrane assay in which BPI was seen to be significantly effective at concentrations as low as 180 nmol/L. This newly discovered function of BPI might provide a possible therapeutic modality for the treatment of various pathologic disorders that depend on angiogenesis.
Collapse
|
12
|
Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.1.176.013k32_176_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) has been known for some time to function in killing bacteria and in neutralizing the effects of bacterial endotoxin lipopolysaccharide. In the present study, BPI is found to be a novel endogenous inhibitor of angiogenesis. Within the sub-μM range, BPI shows a concentration-dependent inhibition of endothelial cell (EC) proliferation that is mediated by cell detachment and subsequent induction of apoptosis. As measured by flow cytometric analysis of the percentage of subdiploid cells, apoptosis induction was half-maximal at about 250 nmol/L BPI. Apoptosis was confirmed by quantification of cells with nuclear fragmentation. Apoptosis was found to be EC specific. In an in vitro collagen gel-based angiogenesis assay, BPI at 1.8 μmol/L inhibited tube formation by 81% after only 24 hours. Evidence for in vivo inhibition of angiogenesis was obtained, using the chorioallantoic membrane assay in which BPI was seen to be significantly effective at concentrations as low as 180 nmol/L. This newly discovered function of BPI might provide a possible therapeutic modality for the treatment of various pathologic disorders that depend on angiogenesis.
Collapse
|
13
|
de Haas CJ, van der Zee R, Benaissa-Trouw B, van Kessel KP, Verhoef J, van Strijp JA. Lipopolysaccharide (LPS)-binding synthetic peptides derived from serum amyloid P component neutralize LPS. Infect Immun 1999; 67:2790-6. [PMID: 10338482 PMCID: PMC96583 DOI: 10.1128/iai.67.6.2790-2796.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is the major mediator of gram-negative septic shock. Molecules that bind LPS and neutralize its toxic effects could have important clinical applications. We showed that serum amyloid P component (SAP) neutralizes LPS. A SAP-derived peptide, consisting of amino acids 27 to 39, inhibited LPS-mediated effects in the presence of human blood. In this study, we used a pepscan of overlapping 15-mer peptides and distinguished two additional LPS-binding regions within the SAP molecule, identified in the regions spanning amino acids 61 to 75 and 186 to 200. The corresponding SAP-derived peptides, pep61-75 and pep186-200, inhibited the binding of fluorescein isothiocyanate-labeled LPS to monocytes as efficiently as a bactericidal/permeability-increasing protein (BPI)-derived 15-mer peptide comprising amino acids 85 to 99. The same SAP-derived peptides very potently inhibited LPS-induced priming of phagocytes in human blood. Also, SAP-derived pep186-200 caused a prolonged survival of actinomycin D-sensitized mice treated with LPS to induce septic shock, indicating a potential use of this peptide in the defense against serious gram-negative sepsis in humans.
Collapse
Affiliation(s)
- C J de Haas
- Department of Inflammation, Eijkman Winkler Institute, University Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
de Haas CJ, Haas PJ, van Kessel KP, van Strijp JA. Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochem Biophys Res Commun 1998; 252:492-6. [PMID: 9826558 DOI: 10.1006/bbrc.1998.9675] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biosensor technology was employed to study the specific interactions of different lipopolysaccharide (LPS)-binding proteins and peptides with LPS, using an LPS-coated surface. Two methods to immobilize biotinylated LPS to streptavidin-coated sensor chips (SA-chips) were evaluated. Biotinylated LPS in PBS or biotinylated LPS, pretreated with EDTA and sodium-desoxycholate, were injected across an SA-chip, resulting in a 'high-' and 'low- mass' LPS chip, respectively. While the 'high mass' LPS chip appeared to be unstable, the 'low mass' LPS chip resulted in reproducible binding curves for bactericidal/permeability-increasing protein (rBPI21) with a binding affinity corresponding to the literature (Kd: 3.75 nM). New Kd values were obtained for serum amyloid P component (SAP, Kd: 3.9 nM), a recently discovered new LPS-binding protein, and cationic protein 18 (CAP18, Kd: 0.58 nM). Moreover, binding affinities of bioactive BPI- and SAP-derived peptides could be determined. This study shows for the first time the applicability of biosensor technology to study interactions of proteins and peptides with LPS, using an LPS-coated sensor chip.
Collapse
Affiliation(s)
- C J de Haas
- Department of Inflammation, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Mayo KH, Haseman J, Ilyina E, Gray B. Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing protein-like bactericidal and endotoxin neutralizing activities. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:81-92. [PMID: 9813253 DOI: 10.1016/s0304-4165(98)00053-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Novel peptide 33mers have been designed by incorporating beta-conformation stabilizing residues from the beta-sheet domains of alpha-chemokines and functionally important residues from the beta-sheet domain of human neutrophil bactericidal protein (B/PI). B/PI is known for its ability to kill bacteria and to neutralize the action of bacterial endotoxin (lipopolysaccharide, LPS) which can induce septic shock leading to eventual death. Here, the goal was to make short linear peptides which demonstrate good beta-sheet folding and maintain bioactivity as in native B/PI. A library of 24 peptide 33mers (betapep-1 to betapep-24) were synthesized with various amino acid substitutions. CD and NMR data acquired in aqueous solution indicate that betapep peptides form beta-sheet structure to varying degrees and self-associate as dimers and tetramers like the alpha-chemokines. Bactericidal activity toward Gram-negative Pseudomonas aeruginosa was tested, and betapep-19 was found to be only about 5-fold less potent (62% kill at 1.2 x 10(-7) M) than native B/PI (80% kill at 2.9 x 10(-8) M). At LPS neutralization, betapep-2 and -23 were found to be most active (66-78% effective at 1.2 x 10(-6) M), being only about 50-100-fold less active than B/PI (50% at 1.5 x 10(-8) M). In terms of structure-activity relations, beta-sheet structural stability correlates with the capacity to neutralize LPS, but not with bactericidal activity. Although a net positive charge is necessary for activity, it is not sufficient for optimal activity. Hydrophobic residues tend to influence activities indirectly by affecting structural stability. Furthermore, results show that sequentially and spatially related residues from the beta-sheet domain of native B/PI can be designed into short linear peptides which show good beta-sheet folding and retain much of the native activity. This research contributes to the development of solutions to the problem of multiple drug-resistant, opportunistic microorganisms like P. aeruginosa and of agents effective at neutralizing bacterial endotoxin.
Collapse
Affiliation(s)
- K H Mayo
- Department of Biochemistry, Biomedical Engineering Center, University of Minnesota Health Science Center, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates.
Collapse
Affiliation(s)
- K H Mayo
- Department of Biochemistry, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|