1
|
Regner PI, Saggese MD, de Oliveira VC, Lanari LC, Desio MA, Quaglia AIE, Wiemeyer G, Capdevielle A, Zuñiga SN, de Roodt CJI, de Roodt AR. Neutralization of "Chaco eagle" (Buteogallus coronatus) serum on some activities of Bothrops spp. venoms. Toxicon 2022; 216:73-87. [PMID: 35714890 DOI: 10.1016/j.toxicon.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Several species of reptiles and mammals have components in their sera that can neutralize toxic components present in snake venoms. In this manuscript, we studied the neutralizing capacity of Chaco eagle's (Buteogallus coronatus) serum. This South American bird of prey eats snakes as a regular part of its diet and has anatomical features that protect from snakes' bites. The neutralizing potency of the Chaco eagle's serum was tested on lethal, hemorrhagic, procoagulant, and phospholipase activities of the venom of "yarará grande" (Bothrops alternatus) and on phospholipase activity of "yarará ñata" (Bothrops ammodytoides) venom; both snakes are known to be the prey of Chaco eagle. Sera of crested caracara (Caracara plancus-a scavenger, omnivorous pan-American bird of prey), secretary bird (Saggitarius serpentarius-an omnivorous bird of prey from Africa that can include venomous snakes in its diet), common hen (Gallus gallus), rat (Rattus norvegicus), mouse (Mus musculus), horse (Equus caballus), and dog (Canis lupus familiaris) were also tested to compare the inhibitory capacity of neutralization. To test isologous and xenologous neutralization, sera from Bothrops alternatus and white-eared opossum (Didelphis albiventris), respectively, were used due to their known inhibitory activity on Bothrops venoms. As a control for the neutralization activity, antibothropic antivenom was used. Chaco eagle's serum neutralized hemorrhagic and phospholipasic activity and slightly neutralized the coagulation and the lethal activity of Bothrops spp. venom. The neutralizing capacity was present in the non-immunoglobulin fraction of the serum, which showed components of acidic characteristics and lower molecular weight than IgY, in correspondence with the characteristics of PLA2s and SVMPs inhibitors described in sera from some snakes and mammals. These studies showed that Chaco eagle's serum neutralizes all toxic activities tested at a higher level than sera from animal species in which inhibitors of snake venoms have not been described (p < 0.05), while it is lower or similar in neutralizing capacity to white-eared opossum and B. alternatus sera.
Collapse
Affiliation(s)
- Pablo I Regner
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Cátedra de Medicina, Producción y Tecnologías de Fauna Acuática y Terrestre, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Caba, Argentina
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vanessa C de Oliveira
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina
| | - Laura C Lanari
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Marcela A Desio
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Agustín I E Quaglia
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Guillermo Wiemeyer
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Andrés Capdevielle
- Ecoparque Buenos Aires, Ministerio de Ambiente y Espacio Público, Buenos Aires, Argentina
| | | | - Carolina J I de Roodt
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina.
| |
Collapse
|
2
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
3
|
Guiding recombinant antivenom development by omics technologies. N Biotechnol 2018; 45:19-27. [DOI: 10.1016/j.nbt.2017.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
4
|
Isolation and characterization of a novel metalloprotease inhibitor from Bothrops alternatus snake serum. Int J Biol Macromol 2017; 98:436-446. [PMID: 28163123 DOI: 10.1016/j.ijbiomac.2017.01.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/08/2017] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
Resistance of snakes and some other animals to snake envenomation has been attributed to soluble factors present in their tissues. Here we report the isolation of a novel metalloprotease inhibitor from Bothrops alternatus snake serum (named BaltMPI) with high purity, using a four-step chromatographic method. BaltMPI has molecular weights of 60.5 and 42.4kDa, as determined by SDS-PAGE and mass spectrometry, respectively, and pI=5.27. The first 60 amino acids from the N-terminal region of BaltMPI, determined by Edman's degradation, showed high homology (97%) with the snake venom metalloprotease inhibitor (SVMPI) BJ46a and other SVMPIs (78-82%). The chromatographic fractions and purified BaltMPI exhibited anti-hemorrhagic activity against Batroxase and BjussuMP-I. BaltMPI was stable over wide ranges of pH (1, 5, 8, and 9) and temperature (-80, -20, 4, 60, and 100°C), and suppressed the fibrinogenolytic, fibrinolytic, and azocaseinolytic activities of Batroxase. BaltMPI specifically inhibited the activity of metalloproteases, without affecting the activity of serine proteases. Together, our results suggest that BaltMPI and other SVMPIs are promising molecules for the treatment of snake envenomation, in particular that caused by Bothrops sp.
Collapse
|
5
|
Bastos VA, Gomes-Neto F, Perales J, Neves-Ferreira AGC, Valente RH. Natural Inhibitors of Snake Venom Metalloendopeptidases: History and Current Challenges. Toxins (Basel) 2016; 8:toxins8090250. [PMID: 27571103 PMCID: PMC5037476 DOI: 10.3390/toxins8090250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023] Open
Abstract
The research on natural snake venom metalloendopeptidase inhibitors (SVMPIs) began in the 18th century with the pioneering work of Fontana on the resistance that vipers exhibited to their own venom. During the past 40 years, SVMPIs have been isolated mainly from the sera of resistant animals, and characterized to different extents. They are acidic oligomeric glycoproteins that remain biologically active over a wide range of pH and temperature values. Based on primary structure determination, mammalian plasmatic SVMPIs are classified as members of the immunoglobulin (Ig) supergene protein family, while the one isolated from muscle belongs to the ficolin/opsonin P35 family. On the other hand, SVMPIs from snake plasma have been placed in the cystatin superfamily. These natural antitoxins constitute the first line of defense against snake venoms, inhibiting the catalytic activities of snake venom metalloendopeptidases through the establishment of high-affinity, non-covalent interactions. This review presents a historical account of the field of natural resistance, summarizing its main discoveries and current challenges, which are mostly related to the limitations that preclude three-dimensional structural determinations of these inhibitors using “gold-standard” methods; perspectives on how to circumvent such limitations are presented. Potential applications of these SVMPIs in medicine are also highlighted.
Collapse
Affiliation(s)
- Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasilia 71605-001, Brazil.
| | - Francisco Gomes-Neto
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasilia 71605-001, Brazil.
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasilia 71605-001, Brazil.
| | - Ana Gisele C Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasilia 71605-001, Brazil.
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasilia 71605-001, Brazil.
| |
Collapse
|
6
|
Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: Contributions to understanding snakebite envenomings and their treatment. Toxicon 2009; 54:1012-28. [DOI: 10.1016/j.toxicon.2009.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
7
|
Takahashi H, Mashiko H. Haemorrhagic Factors from Snake Venoms. I. Properties of Haemorrhagic Factors and Antihaemorrhagic Factors. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809040396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Sánchez EE, Rodríguez-Acosta A. Inhibitors of Snake Venoms and Development of New Therapeutics. Immunopharmacol Immunotoxicol 2008; 30:647-78. [DOI: 10.1080/08923970802279019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elda E. Sánchez
- 1Natural Toxins Research Center (NTRC), College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | | |
Collapse
|
9
|
Perales J, Neves-Ferreira AGC, Valente RH, Domont GB. Natural inhibitors of snake venom hemorrhagic metalloproteinases. Toxicon 2005; 45:1013-20. [PMID: 15922772 DOI: 10.1016/j.toxicon.2005.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/27/2022]
Abstract
Metalloproteinases play an important role in the poisoning process by snake venoms. They evoke systemic injury, by degrading or activating host blood factors, and local damage by acting on endothelial cell surface proteins. Plasma and/or muscle of venomous and non-venomous snakes as well as of some special mammals possess metalloproteinase inhibitors that behave as soluble acceptors available for a rapid inhibition of the deleterious action of these enzymes. The purpose of this review is to describe the state of the art on natural immunity against snake venom metalloproteinases and to overview this field by discussing the available structural and biological properties of the inhibitors protein/gene families.
Collapse
Affiliation(s)
- Jonas Perales
- Departamento de Fisiologia e Farmacodinâmica, IOC, FIOCRUZ, Avenida Brasil 4365, 21.040-900 Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
10
|
de Camargo Gonçalves LR, Chudzinski-Tavassi AM. High molecular mass kininogen inhibits metalloproteinases of Bothrops jararaca snake venom. Biochem Biophys Res Commun 2004; 318:53-9. [PMID: 15110752 DOI: 10.1016/j.bbrc.2004.03.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Indexed: 11/15/2022]
Abstract
High molecular mass kininogen (HK) purified from Bothrops jararaca (Bj) plasma was tested on activities of the Bj venom in vivo and in vitro. Results showed that, when incubated with BjHK, the Bj venom presented inhibition on hemorrhagic, edema forming, myotoxic, and coagulant activities. It is well known that metalloproteinases are directly or indirectly involved in these activities. Similarly, human HK inhibits the hemorrhagic effect of the Bj venom as well as hemorrhagic and enzymatic effects of jararhagin, a hemorrhagic metalloproteinase isolated from Bj venom. Complex between HK and jararhagin was not detected by gel filtration. Nevertheless, the inhibitory effect of the hemorrhagic activity of the venom was only partial when HK was pre-incubated with 0.4mM ZnCl(2) or with 0.45mM CaCl(2). These data suggest that the inhibitory effect depends, at least partially, on the competition for ions between kininogen and metalloproteinases of the venom.
Collapse
|
11
|
Chanhome L, Khow O, Omori-Satoh T, Sitprija V. Antihemorrhagin in the blood serum of king cobra (Ophiophagus hannah): purification and characterization. Toxicon 2003; 41:1013-9. [PMID: 12875876 DOI: 10.1016/s0041-0101(03)00075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
King cobra (Ophiophagus hannah) serum was found to possess antihemorrhagic activity against king cobra hemorrhagin. The activity was stronger than that in commercial king cobra antivenom. An antihemorrhagin has been purified by ion exchange chromatography, affinity chromatography and gel filtration with a 22-fold purification and an overall yield of 12% of the total antihemorrhagic activity contained in crude serum. The purified antihemorrhagin was homogeneous in disc-PAGE and SDS-PAGE. Its apparent molecular weight determined by SDS-PAGE was 120 kDa. The antihemorrhagin was also active against other hemorrhagic snake venoms obtained in Thailand and Japan such as Calloselasma rhodostoma, Trimeresurus albolabris, Trimeresurus macrops and Trimeresurus flavoviridis (Japanese Habu). It inhibited the proteolytic activity of king cobra venom. It is an acid- and thermolabile protein and does not form precipitin lines against king cobra venom.
Collapse
Affiliation(s)
- Lawan Chanhome
- Queen Saovabha Memorial Institute, Thai Red Cross Society, 1871 Rama IV Rd., 10330, Bangkok, Thailand
| | | | | | | |
Collapse
|
12
|
Valente RH, Dragulev B, Perales J, Fox JW, Domont GB. BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3042-52. [PMID: 11358523 DOI: 10.1046/j.1432-1327.2001.02199.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fractionation of the serum of the venomous snake Bothrops jararaca with (NH4)2SO4, followed by phenyl-Sepharose and C4-reversed phase chromatographies, resulted in the isolation of the anti-hemorrhagic factor BJ46a. BJ46a is a potent inhibitor of the SVMPs atrolysin C (class P-I) and jararhagin (P-III) proteolytic activities and B. jararaca venom hemorrhagic activity. The single-chain, acidic (pI 4.55) glycoprotein has a molecular mass of 46 101 atomic mass units determined by MALDI-TOF MS and 79 kDa by gel filtration and dynamic laser light scattering, suggesting a homodimeric structure. mRNA was isolated from the liver of one specimen and transcribed into cDNA. The cDNA pool was amplified by PCR, cloned into a specific vector and used to transform competent cells. Clones containing the complete coding sequence for BJ46a were isolated. The deduced protein sequence was in complete agreement with peptide sequences obtained by Edman degradation. BJ46a is a 322-amino-acid protein containing four putative N-glycosylation sites. It is homologous to the proteinase inhibitor HSF (member of the fetuin family, cystatin superfamily) isolated from the serum of the snake Trimeresurus flavoviridis, having 85% sequence identity. This is the first report of a complete cDNA sequence for an endogenous inhibitor of snake venom metalloproteinases (SVMPs). The sequence reveals that the only proteolytic processing required to obtain the mature protein is the cleavage of the signal peptide. Gel filtration analyses of the inhibitory complexes indicate that inhibition occurs by formation of a noncovalent complex between BJ46a and the proteinases at their metalloproteinase domains. Furthermore, the data shows that the stoichiometry involved in this interaction is of one inhibitor monomer to two enzyme molecules, suggesting an interesting mechanism of metalloproteinase inhibition.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bothrops/blood
- Crotalid Venoms/pharmacology
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Endopeptidases/chemistry
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Indicators and Reagents/pharmacology
- Iodoacetamide/analogs & derivatives
- Iodoacetamide/pharmacology
- Isoelectric Focusing
- Light
- Liver/metabolism
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/chemistry
- Metalloendopeptidases/pharmacology
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Scattering, Radiation
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Snake Venoms/enzymology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Viper Venoms/chemistry
- Viper Venoms/pharmacology
- Bothrops jararaca Venom
Collapse
Affiliation(s)
- R H Valente
- Departamento de Bioquímica, Instituto de Química, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
13
|
Omori-Satoh T, Yamakawa Y, Mebs D. The antihemorrhagic factor, erinacin, from the European hedgehog (Erinaceus europaeus), a metalloprotease inhibitor of large molecular size possessing ficolin/opsonin P35 lectin domains. Toxicon 2000; 38:1561-80. [PMID: 10775756 DOI: 10.1016/s0041-0101(00)00090-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From muscle extracts of the European hedgehog, Erinaceus europaeus, an antihemorrhagic factor, erinacin, was purified by ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, hydroxylapatite and gel filtration columns. A purification of approx. 1400-fold was achieved with an overall yield of 21% in antihemorrhagic activity. The molecular weight of erinacin determined by gel filtration was approx. 1000 kDa. SDS-PAGE of erinacin under reducing conditions indicates that it consists of two types of subunits, alpha and beta, with molecular weights of 37 and 35 kDa, respectively, in a ratio of 1:2. In the presence of 6 M guanidine-HCl, erinacin dissociates into alpha-subunits and beta-subunit decamers. From these results the subunit assembling of erinacin has been formulated as alpha(10).2beta(10). The molecular weight of the subunits and of the beta-subunit decamer was confirmed by MALDI-TOF mass spectrometry. Erinacin inhibits the hemorrhagic and proteolytic activity of the major hemorrhagic metalloprotease from the venom of Bothrops jararaca. Complete inhibition was achieved in an equimolar mixture of inhibitor and enzyme suggesting an equimolar complex. Erinacin is not inhibiting serine proteases such as trypsin and chymotrypsin, it was characterized to be a metalloprotease inhibitor. In electronmicroscopy, flower bouquet-like structures characteristic for some animal lectins were observed. Amino acid sequence analysis indicated that both subunits are almost identical and are composed of common amino terminal, collagen- and fibrinogen-like domains homologous to proteins of the ficolin/opsonin P35 lectin family.
Collapse
Affiliation(s)
- T Omori-Satoh
- Japan Science and Technology Corporation and Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | | | | |
Collapse
|
14
|
Neves-Ferreira AG, Cardinale N, Rocha SL, Perales J, Domont GB. Isolation and characterization of DM40 and DM43, two snake venom metalloproteinase inhibitors from Didelphis marsupialis serum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:309-20. [PMID: 10779682 DOI: 10.1016/s0304-4165(00)00022-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
From Didelphis marsupialis serum, two antihemorrhagic proteins were isolated by DEAE-Sephacel, Phenyl-Sepharose and Superdex 200 and characterized. Their masses by mass spectrometry were 40318 AMU for DM40 and 42373 and 43010 AMU for DM43, indicating the presence of isoforms for the last. Molecular masses of 44.8 and 47.3 were obtained by SDS-PAGE, respectively for DM40 and DM43. Both inhibitors showed isoelectric points lower than 3.5 and glycosylation percentages varying from 20.5 to 29.0%, as estimated by chemical deglycosylation and amino acid analysis. N-terminal sequences of the first 17 residues of DM40 and DM43 were identical except for the exchange of R9 for P9. Both were homologous to oprin, a similar inhibitor from Didelphis virginiana serum. No evidence of complex formation between DM40 and DM43 was observed either by native PAGE or gel filtration chromatography. In addition to the antihemorrhagic activity, DM40 and DM43 inhibited the hydrolysis of casein, fibrinogen and fibronectin by Bothrops jararaca venom. DM43 also showed antilethal, antiedematogenic and antihyperalgesic activities. None of the inhibitors showed enzymatic activity on casein. Both proteins formed stable complexes with jararhagin and inhibited its hemorrhagic effect as well as the enzymatic activity of this toxin on fluorogenic substrate.
Collapse
Affiliation(s)
- A G Neves-Ferreira
- Depto. Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, Fiocruz, 21045-900 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Rioux V, Gerbod MC, Bouet F, Ménez A, Galat A. Divergent and common groups of proteins in glands of venomous snakes. Electrophoresis 1998; 19:788-96. [PMID: 9629916 DOI: 10.1002/elps.1150190531] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein contents of venom-producing glands from the sea-snake Laticauda colubrina (LC) and terrestrial Vipera Russelli (VR) were studied using high-resolution two-dimensional gels: isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) and nonequilibrium pH gradient electrophoresis (NEPHGE) followed by SDS-PAGE. Tentative identities of numerous proteins were established using their amino acid compositions and in certain cases the identities were verified by microsequencing of their N-terminals and internal fragments. As expected, we found several proteins known to be present in the venom of the respective snakes. These include numerous isoforms of phospholipase A2 (PLA2) in both snake glands, various neurotoxins in LC glands and factor IX/factor X-binding protein, hemorrhagic factor and coagulation factor X activating enzyme in Russell's viper glands (VR). Not unexpectedly, we also found a number of cell housekeeping proteins, cytoskeletal proteins, proteins that are necessary for folding, such as heat-shock proteins, protein disulfide-isomerase and peptidyl-prolyl cis/trans isomerases. Unexpectedly, however, the glands of Laticauda colubrina and Russell's viper include a large quantity of antihemorrhagic factor and inhibitor of PLA2, respectively, that have been previously described in snake plasma. The possible reason associated with the presence of these components in venom glands is discussed.
Collapse
Affiliation(s)
- V Rioux
- Département d'Ingénierie et d'Etudes des Protéines, D.S.V./C.E.A., C.E.-Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Omori-Satoh T, Takahashi M, Nagaoka Y, Mebs D. Comparison of antihemorrhagic activities in skeletal muscle extracts from various animals against Bothrops jararaca snake venom. Toxicon 1998; 36:421-3. [PMID: 9620591 DOI: 10.1016/s0041-0101(96)00127-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antihemorrhagic activities of skeletal muscle extracts from various animals were compared in inhibiting the hemorrhagic activity of Bothrops jararaca venom. The muscle extracts of the European hedgehog (Erinaceus europaeus) exhibited the strongest activity, followed by those of other insectivores such as the shrew (Crocidura russula) and mole (Talpa europaea). The antihemorrhagic activities of muscle extracts from experimental animals such as mice, rats, guinea-pigs, hamsters and rabbits were negligible.
Collapse
Affiliation(s)
- T Omori-Satoh
- Research and Development Unit, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok
| | | | | | | |
Collapse
|
18
|
Lizano S, Lomonte B, Fox JW, Gutiérrez JM. Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake Bothrops asper. Biochem J 1997; 326 ( Pt 3):853-9. [PMID: 9307037 PMCID: PMC1218742 DOI: 10.1042/bj3260853] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A protein that neutralizes the biological activities of basic phospholipase A2 (PLA2) myotoxin isoforms from the venom of the snake Bothrops asper was isolated from its blood by affinity chromatography with Sepharose-immobilized myotoxins. Biochemical characterization of this B. asper myotoxin inhibitor protein (BaMIP) indicated a subunit molecular mass of 23-25 kDa, an isoelectric point of 4, and glycosylation. Gel-filtration studies revealed a molecular mass of 120 kDa, suggesting that BaMIP possesses an oligomeric structure composed of five 23-25 kDa subunits. Functional studies indicated that BaMIP inhibits the PLA2 activity of B. asper basic myotoxins I and III, as well as the myotoxicity and edema-forming activity in vivo and cytolytic activity in vitro towards cultured endothelial cells, of all four myotoxin isoforms (I-IV) tested. Sequence analysis of the first 63 amino acid residues from the N-terminus of BaMIP indicated more than 65% sequence similarity to the PLA2 inhibitors isolated from the blood of the crotalid snakes Trimeresurus flavoviridis and Agkistrodon blomhoffii siniticus. These inhibitors also share sequences similar to the carbohydrate-recognition domains of human and rabbit cellular PLA2 receptors, suggesting a common domain evolution among snake plasma PLA2 inhibitors and mammalian PLA2 receptors. Despite this similarity, this is the first description of a natural anti-myotoxic factor from snake blood.
Collapse
Affiliation(s)
- S Lizano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | |
Collapse
|
19
|
Borkow G, Gutiérrez JM, Ovadia M. Inhibition of the hemorrhagic activity of Bothrops asper venom by a novel neutralizing mixture. Toxicon 1997; 35:865-77. [PMID: 9241781 DOI: 10.1016/s0041-0101(96)00193-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study screened 25 sera, 19 synthetic products and five antivenoms obtained after immunization for their ability to neutralize the hemorrhagic activity of venom from the snake Bothrops asper. Among the sera screened, the homologous serum of B. asper itself was found to possess the highest neutralizing capacity, abolishing the hemorrhagic effect of the venom at weight ratio of 3:1. It was more efficient than the antisera obtained by immunization. Among the synthetic compounds tested, only O-phenanthroline and EDTA salts inhibited the hemorrhagic activity at concentrations of 0.5-10 mM; however, only CaNa2EDTA was non-toxic at the concentrations studied. Intravenous injections and in situ administration of the non-toxic inhibitors revealed that a fraction of B. asper serum, the horse polyvalent antivenom and CaNa2EDTA were the most potent antihemorrhagic materials against B. asper venom, especially when administered in situ as a mixture. This work suggests that this neutralizing mixture could be highly useful in the neutralization of local and systemic hemorrhage developing after B. asper envenomation.
Collapse
Affiliation(s)
- G Borkow
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|