1
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
2
|
Kondo T, Shibata Y. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophys Physicobiol 2022. [PMCID: PMC9173860 DOI: 10.2142/biophysico.bppb-v19.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a crucial role in concentrating the photon energy from the sun that otherwise excites a typical pigment molecule, such as chlorophyll-a, only several times a second. Densely packed pigments in the complexes ensure efficient energy transfer to the reaction center. At the same time, LHCs have the ability to switch to an energy-quenching state and thus play a photoprotective role under excessive light conditions. Photoprotection is especially important for oxygenic photosynthetic organisms because toxic reactive oxygen species can be generated through photochemistry under aerobic conditions. Because of the extreme complexity of the systems in which various types of pigment molecules strongly interact with each other and with the surrounding protein matrixes, there has been long-standing difficulty in understanding the molecular mechanisms underlying the flexible switching between the light-harvesting and quenching states. Single-molecule spectroscopy studies are suitable to reveal the conformational dynamics of LHCs reflected in the fluorescence properties that are obscured in ordinary ensemble measurements. Recent advanced single-molecule spectroscopy studies have revealed the dynamical fluctuations of LHCs in their fluorescence peak position, intensity, and lifetime. The observed dynamics seem relevant to the conformational plasticity required for the flexible activations of photoprotective energy quenching. In this review, we survey recent advances in the single-molecule spectroscopy study of the light-harvesting systems of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
3
|
Govindjee G, Shen YK, Zhu XG, Mi H, Ogawa T. Honoring Bacon Ke at 100: a legend among the many luminaries and a highly collaborative scientist in photosynthesis research. PHOTOSYNTHESIS RESEARCH 2021; 147:243-252. [PMID: 33582974 DOI: 10.1007/s11120-021-00820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Bacon Ke, who did pioneering research on the primary photochemistry of photosynthesis, was born in China on July 26, 1920, and currently, he is living in a senior home in San Francisco, California, and is a centenarian. To us, this is a very happy and unique occasion to honor him. After providing a brief account of his life, and a glimpse of his research in photosynthesis, we present here "messages" for Bacon Ke@ 100 from: Robert Alfano (USA), Charles Arntzen (USA), Sandor Demeter (Hungary), Richard A. Dilley (USA), John Golbeck (USA), Isamu Ikegami (Japan), Ting-Yun Kuang (China), Richard Malkin (USA), Hualing Mi (China), Teruo Ogawa (Japan), Yasusi Yamamoto (Japan), and Xin-Guang Zhu (China).
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA.
| | - Yun-Kang Shen
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hualing Mi
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Teruo Ogawa
- , Kamisaginomiya 3-17-11, Nakano-ku, Tokyo, 165-0031, Japan
| |
Collapse
|
4
|
Sétif P, Boussac A, Krieger-Liszkay A. Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. PHOTOSYNTHESIS RESEARCH 2019; 142:307-319. [PMID: 31482263 DOI: 10.1007/s11120-019-00665-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
A kinetic-LED-array-spectrophotometer (Klas) was recently developed for measuring in vivo redox changes of P700, plastocyanin (PCy), and ferredoxin (Fd) in the near-infrared (NIR). This spectrophotometer is used in the present work for in vitro light-induced measurements with various combinations of photosystem I (PSI) from tobacco and two different cyanobacteria, spinach plastocyanin, cyanobacterial cytochrome c6 (cyt. c6), and Fd. It is shown that cyt. c6 oxidation contributes to the NIR absorption changes. The reduction of (FAFB), the terminal electron acceptor of PSI, was also observed and the shape of the (FAFB) NIR difference spectrum is similar to that of Fd. The NIR difference spectra of the electron-transfer cofactors were compared between different organisms and to those previously measured in vivo, whereas the relative absorption coefficients of all cofactors were determined by using single PSI turnover conditions. Thus, the (840 nm minus 965 nm) extinction coefficients of the light-induced species (oxidized minus reduced for PC and cyt. c6, reduced minus oxidized for (FAFB), and Fd) were determined with values of 0.207 ± 0.004, - 0.033 ± 0.006, - 0.036 ± 0.008, and - 0.021 ± 0.005 for PCy, cyt. c6, (FAFB) (single reduction), and Fd, respectively, by taking a reference value of + 1 for P700+. The fact that the NIR P700 coefficient is larger than that of PCy and much larger than that of other contributing species, combined with the observed variability in the NIR P700 spectral shape, emphasizes that deconvolution of NIR signals into different components requires a very precise determination of the P700 spectrum.
Collapse
Affiliation(s)
- Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France.
| | - Alain Boussac
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France
| |
Collapse
|
5
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
McConnell MD, Lowry D, Rowan TN, van Dijk K, Redding KE. Purification and photobiochemical profile of photosystem 1 from a high-salt tolerant, oleaginous Chlorella (Trebouxiophycaea, Chlorophyta). Biochem Cell Biol 2015; 93:199-209. [PMID: 25600216 DOI: 10.1139/bcb-2014-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.
Collapse
Affiliation(s)
- Michael D McConnell
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287-1604, USA., Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE 68588-0664, USA
| | | | | | | | | |
Collapse
|
7
|
Electron-transfer kinetics in cyanobacterial cells: methyl viologen is a poor inhibitor of linear electron flow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:212-222. [PMID: 25448535 DOI: 10.1016/j.bbabio.2014.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/13/2023]
Abstract
The inhibitor methyl viologen (MV) has been widely used in photosynthesis to study oxidative stress. Its effects on electron transfer kinetics in Synechocystis sp. PCC6803 cells were studied to characterize its electron-accepting properties. For the first hundreds of flashes following MV addition at submillimolar concentrations, the kinetics of NADPH formation were hardly modified (less than 15% decrease in signal amplitude) with a significant signal decrease only observed after more flashes or continuous illumination. The dependence of the P700 photooxidation kinetics on the MV concentration exhibited a saturation effect at 0.3 mM MV, a concentration which inhibits the recombination reactions in photosystem I. The kinetics of NADPH formation and decay under continuous light with MV at 0.3 mM showed that MV induces the oxidation of the NADP pool in darkness and that the yield of linear electron transfer decreased by only 50% after 1.5-2 photosystem-I turnovers. The unexpectedly poor efficiency of MV in inhibiting NADPH formation was corroborated by in vitro flash-induced absorption experiments with purified photosystem-I, ferredoxin and ferredoxin-NADP(+)-oxidoreductase. These experiments showed that the second-order rate constants of MV reduction are 20 to 40-fold smaller than the competing rate constants involved in reduction of ferredoxin and ferredoxin-NADP(+)-oxidoreductase. The present study shows that MV, which accepts electrons in vivo both at the level of photosystem-I and ferredoxin, can be used at submillimolar concentrations to inhibit recombination reactions in photosystem-I with only a moderate decrease in the efficiency of fast reactions involved in linear electron transfer and possibly cyclic electron transfer.
Collapse
|
8
|
Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1553-66. [PMID: 24388916 DOI: 10.1016/j.bbabio.2013.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Mathis P, Setif P. Near Infra-Red Absorption Spectra of the ChlorophyllaCations and Triplet State in vitro and in vivo. Isr J Chem 2013. [DOI: 10.1002/ijch.198100057] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
SAYED OSAMAH, EARNSHAW MICHAELJ, EMES MICHAELJ. Characterization of the heat-induced stimulation of Photosystem-I-mediated electron transport. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1438-8677.1994.tb00741.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ke B, Hawkridge FM, Sahu S. Redox titration of fluorescence yield of photosystem II. Proc Natl Acad Sci U S A 2010; 73:2211-5. [PMID: 16592332 PMCID: PMC430500 DOI: 10.1073/pnas.73.7.2211] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The variable fluorescence yield of photosystem II is dependent on the redox state of the fluorescence quencher molecule or the primary electron acceptor of the system. We have carried out redox titrations of fluorescence yield of a photochemically active photosystem-II reaction-center particle and have measured the redox potential of the photosystem-II primary acceptor.During reductive titrations using dithionite as the reductant, only a single quenching transition was observed. For instance, at pH 7.0, the midpoint potential of the fluorescence transition is -325 mV, and those at a pH between 6.0 and 7.5 are consistent with a pH dependence of about 60 mV/pH unit. At a given pH, the midpoint potential of the transition closely corresponds to that of the most negative transition previously measured in unfractionated chloroplasts (both by chemical reductive titration). Oxidative titrations using ferricyanide as the oxidant yielded hysteresis in the titration curves.Similar changes in fluorescence yield were observed in redox titrations by electrochemical reduction or oxidation. Electrochemical reductive and oxidative titrations yielded reversible transitions, contrary to the hysteresis observed during chemical oxidative titration. From coulometric-titration data, we have estimated that most likely one electron is involved in the redox transition of the fluorescence-quencher or primary-electron-acceptor molecule of photosystem II. These findings are consistent with the current proposal that a membrane-bound plastoquinone functions as the primary acceptor of photosystem II.
Collapse
Affiliation(s)
- B Ke
- Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387
| | | | | |
Collapse
|
13
|
Davis MS, Forman A, Fajer J. Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci U S A 2010; 76:4170-4. [PMID: 16592698 PMCID: PMC411532 DOI: 10.1073/pnas.76.9.4170] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnesium tetraphenylchlorin, a synthetic model for chlorophyll, exhibits significant variations in the unpaired spin densities of its cation radicals with concomitant changes in oxidation potentials as a function of solvent and axial ligand. Similar effects are observed for chlorophyll (Chl) a and its cation radicals. Oxidation potentials for Chl --> Chl(+.) as high as +0.9 V (against a normal hydrogen electrode) are observed in nonaqueous solvents, with linewidths of the electron spin resonance signals of monomeric Chl(+.) ranging between 9.2 and 7.8 G in solution. These changes in electronic configuration and ease of oxidation are attributed to mixing of two nearly degenerate ground states of the radicals theoretically predicted by molecular orbital calculations. Comparison of the properties of chlorophyll in vitro with the optical, redox, and magnetic characteristics attributed to P-680, the primary donor of photosystem II which mediates oxygen evolution in plant photosynthesis, leads us to suggest that P-680 may be a ligated chlorophyll monomer whose function as a phototrap is determined by interactions with its (protein?) environment.
Collapse
Affiliation(s)
- M S Davis
- Department of Energy and Environment, Brookhaven National Laboratory, Upton, New York 11973
| | | | | |
Collapse
|
14
|
Shuvalov VA, Dolan E, Ke B. Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc Natl Acad Sci U S A 2010; 76:770-3. [PMID: 16592621 PMCID: PMC383046 DOI: 10.1073/pnas.76.2.770] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triton-fractionated photosystem-I particles poised at -625 mV, where the two bound iron-sulfur proteins are reduced, have been studied by optical and electron paramagnetic resonance spectroscopies from 293 to 5 K. At 5-9 K, these particles exhibit two decay components with lifetimes of 1.3 and 130 msec in the laser pulse-induced absorption and electron paramagnetic resonance signal changes. Spectral properties of the 130-msec decay component reflect the charge separation between P-700 and some iron-sulfur center having a broad optical absorbance in the 400- to 550-nm region and a previously reported electron paramagnetic resonance signal with g = 1.78, 1.88, and 2.08. Spectral properties of the 1-msec decay component indicate photoinduced charge separation between P-700 and a chlorophyll a dimer having absorption bands at 420, 450, and 700 nm. It is assumed that these two acceptors participate in the electron transfer from P-700(*) to the bound iron-sulfur proteins.
Collapse
Affiliation(s)
- V A Shuvalov
- Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387
| | | | | |
Collapse
|
15
|
Fajer J, Borg DC, Forman A, Felton RH, Dolphin D, Vegh L. The cation radicals of free base and zinc bacteriochlorin, bacteriochlorophyll, and bacteriopheophytin. Proc Natl Acad Sci U S A 2010; 71:994-8. [PMID: 16592150 PMCID: PMC388144 DOI: 10.1073/pnas.71.3.994] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One-electron oxidation of zinc tetraphenylbacteriochlorin and its metal-free base yielded stable cation radicals. Electron spin resonance hyperfine splittings were assigned by selective deuterations. These results indicate that the protons of the saturated rings of the bacteriochlorins carry large spin densities, in accord with molecular orbital calculations. Comparison in vitro of the optical spectra of bacteriochlorins and their cation radicals with those of bacteriochlorophyll show close correspondence and suggest that the electron spin resonance data from the former may also prove a guide to the biological molecule. The surprising similarity in properties between the radicals of free base and zinc bacteriochlorins is maintained in the chlorophylls: cation radicals of bacteriopheophytin and methyl pheophorbide (the free bases of bacteriochlorophyll and methyl chlorophyllide, respectively) exhibit electron spin resonance properties similar to those of their magnesium-containing derivatives. The possibility that metal-free chlorophylls participate in photosynthesis is discussed.
Collapse
Affiliation(s)
- J Fajer
- Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
| | | | | | | | | | | |
Collapse
|
16
|
Ke B, Hansen RE, Beinert H. Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Natl Acad Sci U S A 2010; 70:2941-5. [PMID: 16592113 PMCID: PMC427143 DOI: 10.1073/pnas.70.10.2941] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Digitonin - fractionated photosystem - I subchloroplasts were titrated potentiometrically between -450 and -610 mV at pH 10. Examination of the titrated subchloroplasts by low-temperature (13 degrees K) electron paramagnetic resonance spectroscopy revealed resonances centered at values of 2.05, 1.94, 1.92, 1.89, and 1.86 on the g-factor scale. The peak heights depended on the potentials at which the chloroplasts were poised. The resonances of at least three iron-sulfur centers can be recognized: one with lines at g = 2.05 and 1.94; one with lines at g = 2.05, 1.92, and 1.89; and one for which only a line at g = 1.86 has been resolved. The midpoint potentials of the iron-sulfur species fall into two distinctly separate regions: the titration profile of the g = 1.94 signal, the first segment of the g = 2.05 plot, and the rise phase of the g = 1.86 signal had a value of -530 +/- 5 mV; the upper segment of the g = 2.05 plot, the decrease phase of the g = 1.86 signal, and the g = 1.89 profile had a midpoint potential estimated to be [unk] -580 mV. The oxidation-reduction reaction of each of the bound iron-sulfur species, as represented by the changes of the electron paramagnetic resonance spectra, was reversible and apparently involved a two-electron change.Titration at pH 9 could only be carried to -560 mV, and essentially only the first half of the titration behavior as found at pH 10 was seen. At any given potential more positive than -560 mV, the part of the iron-sulfur protein that was not reduced electrochemically could be reduced photochemically, but only to the maximum extent reduced electrochemically at -560 mV. Whereas, chloroplasts illuminated at room temperature and then frozen while still being illuminated developed a signal similar to that produced by electrochemical reduction at -610 mV, illumination at 77 degrees K did not bring about photoreduction beyond that accomplished electrochemically at about -560 mV.Dithionite alone in the dark and under anaerobic conditions brought about a partial reduction to the extent of the first electrochemical reduction step. Dithionite plus illumination at room temperature or dithionite plus methyl viologen in the dark produced the maximum signal. Electron paramagnetic resonance spectra due to either light or electrochemically reduced iron-sulfur proteins showed no detectable decay for at least 3 days when samples were stored in the dark at 77 degrees K.
Collapse
Affiliation(s)
- B Ke
- Charles F. Kettering Research Laboratory, Yellow Springs, Ohio, 45387
| | | | | |
Collapse
|
17
|
Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T. Antenna complexes protect Photosystem I from photoinhibition. BMC PLANT BIOLOGY 2009; 9:71. [PMID: 19508723 PMCID: PMC2704212 DOI: 10.1186/1471-2229-9-71] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. RESULTS In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. CONCLUSION We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Laboratoire de Génétique et Biophysique des Plantes – UMR 6191 CEA-CNRS-Université de la Méditerranée, Marseille, France
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | | | - Rainer Hienerwadel
- Laboratoire de Génétique et Biophysique des Plantes – UMR 6191 CEA-CNRS-Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
18
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
19
|
Nakamura A, Mizoguchi S, Yoshida E, Kato Y, Watanabe T. Light-induced Charge Separation in Photosystem I can be Sensitized by an Artificial Fluorescent Dye Covalently Linked to the Photosystem I Complex Surfaces. CHEM LETT 2005. [DOI: 10.1246/cl.2005.1472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Setif P, Bottin H. Identification of electron-transfer reactions involving the acceptor A1 of photosystem I at room temperature. Biochemistry 2002. [DOI: 10.1021/bi00432a049] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Light-induced Fourier transform infrared (FTIR) spectroscopic investigations of primary reactions in photosystem I and photosystem II. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80589-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
|
23
|
Lagoutte B, Setif P, Duranton J. Tentative identification of the apoproteins of iron-sulfur centers of Photosystem I. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)81070-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
|
25
|
Abstract
Ferredoxin and flavodoxin are soluble proteins which are reduced by the terminal electron acceptors of photosystem I. The kinetics of ferredoxin (flavodoxin) photoreduction are discussed in detail, together with the last steps of intramolecular photosystem I electron transfer which precede ferredoxin (flavodoxin) reduction. The present knowledge concerning the photosystem I docking site for ferredoxin and flavodoxin is described in the second part of the review.
Collapse
Affiliation(s)
- P Sétif
- Section de Bioénergétique and CNRS URA 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, 91191, Gif sur Yvette, France.
| |
Collapse
|
26
|
Vassiliev IR, Antonkine ML, Golbeck JH. Iron-sulfur clusters in type I reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:139-60. [PMID: 11687212 DOI: 10.1016/s0005-2728(01)00197-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 310 South Frear Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
27
|
Hawkesford MJ, Houchins JP, Hind G. Reconstitution of photosynthetic electron transfer in cyanobacterial heterocyst membranes. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80460-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
A cyclic protolytic reaction around photosystem II at the inside of the thylakoid membrane in DCMU-poisoned chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(81)81171-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Mathis P, Sauer K. Rapidly reversible flash-induced electron transfer in aP-700 chlorophyll-protein complex isolated with SDS. FEBS Lett 2001. [DOI: 10.1016/0014-5793(78)80192-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Sétif P, Seo D, Sakurai H. Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria. Biophys J 2001; 81:1208-19. [PMID: 11509338 PMCID: PMC1301603 DOI: 10.1016/s0006-3495(01)75779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iron-sulfur clusters are the terminal electron acceptors of the photosynthetic reaction centers of green sulfur bacteria and photosystem I. We have studied electron-transfer reactions involving these clusters in the green sulfur bacterium Chlorobium tepidum, using flash-absorption spectroscopic measurements. We show for the first time that three different clusters, named F(X), F(1), and F(2), can be photoreduced at room temperature during a series of consecutive flashes. The rates of electron escape to exogenous acceptors depend strongly upon the number of reduced clusters. When two or three clusters are reduced, the escape is biphasic, with the fastest phase being 12-14-fold faster than the slowest phase, which is similar to that observed after single reduction. This is explained by assuming that escape involves mostly the second reducible cluster. Evidence is thus provided for a functional asymmetry between the two terminal acceptors F(1) and F(2). From multiple-flash experiments, it was possible to derive the intrinsic recombination rates between P840(+) and reduced iron-sulfur clusters: values of 7, 14, and 59 s(-1) were found after one, two and three electron reduction of the clusters, respectively. The implications of our results for the relative redox potentials of the three clusters are discussed.
Collapse
Affiliation(s)
- P Sétif
- Commissariat à l'Energie Atomique, Département de Biologie Cellulaire et Moléculaire, Section de Bioénergétique and CNRS URA 2096, 91191 Gif sur Yvette, France.
| | | | | |
Collapse
|
31
|
Kusumoto N, Sétif P, Brettel K, Seo D, Sakurai H. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 1999; 38:12124-37. [PMID: 10508417 DOI: 10.1021/bi990452s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.
Collapse
Affiliation(s)
- N Kusumoto
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Meimberg K, Fischer N, Rochaix JD, Mühlenhoff U. Lys35 of PsaC is required for the efficient photoreduction of flavodoxin by photosystem I from Chlamydomonas reinhardtii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:137-44. [PMID: 10429197 DOI: 10.1046/j.1432-1327.1999.00474.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photoreduction of the oxidized and the semiquinone form of flavodoxin from Synechocystis sp. PCC 6803 by the photosystem I (PSI) of wild-type Chlamydomonas reinhardtii and the mutant strains Lys35Asp, Lys35Glu and Lys35Arg was analysed by flash-absorption spectroscopy to investigate the role of residue Lys35 of the PSI subunit PsaC in flavodoxin reduction. For PSI preparations from C. reinhardtii the reduction of oxidized flavodoxin was monoexponential and approached limiting electron transfer rates similar to those of cyanobacterial PSI from the wild-type and the Lys35Arg mutant. For PSI from the Lys35Glu mutant, however, a approximately 2.5-fold smaller value was determined. The photoreduction of flavodoxin semiquinone by PSI from C. reinhardtii lacked fast first-order kinetic components and, in contrast with PSI from cyanobacteria, displayed only a single concentration-dependent phase. From this phase, second-order rate constants were calculated for wild-type PSI and PSI from the Lys35Arg mutant which were comparable to those of PSI from cyanobacteria. For PSI from the Lys35Glu and the Lys35Asp mutants the derived second-order rate constants were 19 and 10 times smaller. Thus, the inversion of charge at position 35 of PsaC negatively affects the rate of electron transfer to both forms of flavodoxin, whereas PSI complexes that retain a positive charge at this position show wild-type kinetics. However, the positive charge at this position of PsaC is not essential for flavodoxin photoreduction as the number of flavodoxin molecules reduced per PSI was similar for all of the PSI complexes investigated. In addition, chemical cross-linking assays showed that the binary cross-linking product between flavodoxin and PsaC of PSI from wild-type C. reinhardtii was not formed with PSI complexes from the Lys13Asp and Lys35Glu mutants. This indicates that Lys35 of PsaC is probably essential for the chemical cross-link between PsaC and flavodoxin. Taken together, these experiments show that Lys35 of PsaC plays a strikingly similar role in the electron transfer from PSI to both ferredoxin and flavodoxin.
Collapse
Affiliation(s)
- K Meimberg
- Biologisches Institut II, University of Freiburg, Germany
| | | | | | | |
Collapse
|
33
|
He WZ, Malkin R. Reconstitution of iron-sulfur center B of Photosystem I damaged by mercuric chloride. PHOTOSYNTHESIS RESEARCH 1994; 41:381-388. [PMID: 24310152 DOI: 10.1007/bf02183040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/1994] [Accepted: 05/02/1994] [Indexed: 06/02/2023]
Abstract
Incubation of thylakoid membranes from spinach with low concentrations of mercuric chloride induces the loss of one of the iron-sulfur centers, FB, in Photosystem I (PS I) and inhibits the electron transfer from PS I to the soluble electron carrier, ferredoxin. Reconstitution of this damaged iron-sulfur center has been carried out by incubating treated thylakoid membranes with exogenous FeCl3 and Na2S in the presence ofβ-mercaptoethanol under anaerobic conditions. Low temperature EPR measurements indicate that center FB is largely restored. Kinetic experiments show that the restored FB can be photoreduced from P700. However, these reconstituted thylakoid membranes are still incompetent in the photoreduction of ferredoxin and NADP(+), even though ferredoxin binding to the modified membranes was not impaired, indicating additional changes in the structure of the PS I complex must have occurred.
Collapse
Affiliation(s)
- W Z He
- Department of Plant Biology, University of California-Berkeley, 94720, Berkeley, CA, USA
| | | |
Collapse
|
34
|
Kleinherenbrink FA, Chiou HC, LoBrutto R, Blankenship RE. Spectroscopic evidence for the presence of an iron-sulfur center similar to Fx of Photosystem I in Heliobacillus mobilis. PHOTOSYNTHESIS RESEARCH 1994; 41:115-123. [PMID: 11539856 DOI: 10.1007/bf02184151] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Treatment of membranes of Heliobacillus mobilis with high concentrations of the chaotropic agent urea resulted in the removal of the iron-sulfur centers FA and FB from the reaction center, as indicated by EPR spectra under strongly reducing conditions. In urea-treated membranes, transient absorption measurements upon a laser flash indicated a recombination between the photo-oxidized primary donor P798+ and a reduced acceptor with a time constant of 20 ms at room temperature. Benzylviologen, vitamin K-3 and methylene blue were found to accept electrons from the reduced acceptor efficiently. A differential extinction coefficient of 225-240 mM-1 cm-1 at 798 nm was determined from experiments in the presence of methylene blue. Transient absorption difference spectra between 400 and 500 nm in the presence and absence of artificial acceptors indicated that the electron acceptor involved in the 20 ms recombination has an absorption spectrum similar to that of an iron-sulfur center. This iron-sulfur center was assigned to be analogous to Fx of Photosystem I. Our results provide evidence in support of the presence of Fx in heliobacteria, which was proposed on the basis of the reaction center polypeptide sequence (Liebl et al. (1993) Proc. Natl. Acad. Sci. USA 90: 7124-7128). Implications for the electron transfer pathway in the reaction center of heliobacteria are discussed.
Collapse
Affiliation(s)
- F A Kleinherenbrink
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA
| | | | | | | |
Collapse
|
35
|
Medina M, Díaz A, Hervás M, Navarro JA, Gómez-Moreno C, de la Rosa MA, Tollin G. A comparative laser-flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome c6 photooxidation by photosystem I particles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:1133-8. [PMID: 8504808 DOI: 10.1111/j.1432-1033.1993.tb17863.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Laser-flash absorption spectroscopy has been used to investigate the kinetics of electron transfer from reduced cytochrome c6 and plastocyanin, isolated from Anabaena PCC 7119, to oxidized P700 in photosystem-I particles isolated from the same cyanobacterium and from spinach. For all metalloproteins and photosystems, the observed rate constant has a non-linear protein-concentration dependence, thus suggesting complex formation preceding electron transfer. Plastocyanin and cytochrome c6 have similar association constants for complex formation with spinach photosystem I, but the copper protein exhibits a higher intracomplex-electron-transfer rate constant (twofold). With Anabaena photosystem I, the two redox proteins are more effective with respect to both complex formation (5-10-fold) and electron transfer (1.5-4-fold) than with the spinach photosystem. In all cases, the observed rate constants for electron-transfer monotonically decrease with increasing NaCl or MgCl2 concentration. This is interpreted in terms of the involvement of attractive electrostatic interactions, which result in the initial collision complex having the most productive orientation for the electron transfer process, without a requirement for further reorientation. The magnitude of the response to MgCl2 suggests the occurrence of specific ion effects as well. In the absence of added salts, the reduction rate of oxidized P700 increases with pH from approximately 6 to 8, but decreases slightly at pH 8.5.
Collapse
Affiliation(s)
- M Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Medina M, Hervás M, Navarro JA, De la Rosa MA, Gómez-Moreno C, Tollin G. A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS Lett 1992; 313:239-42. [PMID: 1446742 DOI: 10.1016/0014-5793(92)81200-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electron transfer from P700 in photosystem I (PSI) particles from spinach to Anabaena sp. PCC 7119 flavodoxin has been studied using laser flash absorption spectroscopy. A non-linear protein concentration dependence of the rate constants was obtained, suggesting a two-step mechanism involving complex formation (k = 3.6 x 10(7) M-1.s-1) followed by intracomplex electron transfer (k = 270 s-1). The observed rate constants had a biphasic dependence on the concentrations of NaCl or MgCl2, with maximum values in the 40-80 mM range for NaCl and 4-12 mM for MgCl2. To our knowledge, this is the first time that the kinetics of PSI-dependent flavodoxin photoreduction have been determined.
Collapse
Affiliation(s)
- M Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Hervás M, Navarro JA, Tollin G. A LASER FLASH SPECTROSCOPY STUDY OF THE KINETICS OF ELECTRON TRANSFER FROM SPINACH PHOTOSYSTEM I TO SPINACH AND ALGAL FERREDOXINS. Photochem Photobiol 1992. [DOI: 10.1111/j.1751-1097.1992.tb02166.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Hervás M, Navarro JA, De la Rosa MA, Tollin G. Electron transfer reactions in both the oxidizing and reducing sites of photosystem I. J Electroanal Chem (Lausanne) 1992. [DOI: 10.1016/0022-0728(92)85087-j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Manipulation of the imbalance for linear electron flow activities between photosystems I and II of photosynthesis by cyclic electron flow cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90187-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90074-e] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Guigliarelli B, Guillaussier J, Bertrand P, Gayda JP, Setif P. Evidence for Only One Iron-Sulfur Cluster in Center X of Photosystem I from Higher Plants. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83306-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Mathis P, Ikegami I, Setif P. Nanosecond flash studies of the absorption spectrum of the Photosystem I primary acceptor Ao. PHOTOSYNTHESIS RESEARCH 1988; 16:203-210. [PMID: 24429527 DOI: 10.1007/bf00028839] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/1987] [Accepted: 12/08/1987] [Indexed: 06/03/2023]
Abstract
Photosystem I particles devoid of the secondary electron acceptor A1 were studied by nanosecond flash absorption. The primary radical pair (P-700(+), A0 (-)) decays with a half-time of 35 ns. The difference spectrum was measured (400-870 nm). After subtraction of the P-700(+)/P-700 difference spectrum, the A0 (-)/A0 was obtained. It includes bleachings centered at 690 and 430 nm, and broad positive bands in the near infra-red and the blue-green. This spectrum is consistent with A0 being chlorophyll a absorbing at 690 nm.
Collapse
Affiliation(s)
- P Mathis
- Service de Biophysquie, Département de Biologie, CEN Saclay, 91191, Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
43
|
Ikegami I, Sétif P, Mathis P. Absorption studies of Photosystem I photochemistry in the absence of vitamin K-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90120-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Smit H, Amesz J, van der Hoeven M. Electron transport and triplet formation in membranes of the photosynthetic bacterium Heliobacterium chlorum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90044-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Rich PR, Heathcote P, Moss DA. Kinetic studies of electron transfer in a hybrid system constructed from the cytochrome bf complex and Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90256-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Turn-over of electron donors in Photosystem I: Double-flash experiments with pea chloroplasts and Photosystem I particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90251-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Mathis P, Rutherford A. Chapter 4 The primary reactions of photosystems I and II of algae and higher plants. NEW COMPREHENSIVE BIOCHEMISTRY 1987. [DOI: 10.1016/s0167-7306(08)60135-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in Photosystem I particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90186-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Amesz J, Duysens LN. Electron donors and acceptors in photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 1986; 10:337-346. [PMID: 24435381 DOI: 10.1007/bf00118299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A review is given of primary and associated electron transport reactions in various division of photosynthetic bacteria and in the two photosystems of plant photosynthesis. Two types of electron acceptor chains are distinguished: type 'Q', found in purple bacteria, Chloroflexus and system II of oxygenic photosynthesis and type 'F', found in green sulfur bacteria, Heliobacterium and photosystem I. Secondary donor reactions are discussed in relation to plant photosystem II.
Collapse
Affiliation(s)
- J Amesz
- Department of Biophysics, Huygens Laboratory of the State University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
50
|
Sétif P, Bottin H, Mathis P. Absorption studies of primary reactions in Photosystem I. Yield and rate of formation of the P-700 triplet state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90033-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|