1
|
Ahmad S, Yang K, Chen G, Huang J, Hao Y, Tu S, Zhou Y, Zhao K, Chen J, Shi X, Lan S, Liu Z, Peng D. Transcriptome mining of hormonal and floral integrators in the leafless flowers of three cymbidium orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1043099. [PMID: 36311107 PMCID: PMC9608508 DOI: 10.3389/fpls.2022.1043099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Flowering is the most studied ornamental trait in orchids where long vegetative phase may span up to three years. Cymbidium orchids produce beautiful flowers with astonishing shapes and pleasant scent. However, an unusually long vegetative phase is a major drawback to their ornamental value. We observed that under certain culture conditions, three cymbidium species (Cymbidium ensifolium, C. goeringii and C. sinense) skipped vegetative growth phase and directly flowered within six months, that could be a breakthrough for future orchids with limited vegetative growth. Hormonal and floral regulators could be the key factors arresting vegetative phase. Therefore, transcriptomic analyses were performed for leafless flowers and normal vegetative leaves to ascertain differentially expressed genes (DEGs) related to hormones (auxin, cytokinin, gibberellin, abscisic acid and ethylene), floral integrators and MADS-box genes. A significant difference of cytokinin and floral regulators was observed among three species as compared to other hormones. The MADS-box genes were significantly expressed in the leafless flowers of C. sinense as compared to other species. Among the key floral regulators, CONSTANS and AGAMOUS-like genes showed the most differential expression in the leafless flowers as compared to leaves where the expression was negligible. However, CONSTANS also showed downregulation. Auxin efflux carriers were mainly downregulated in the leafless flowers of C. ensifolium and C. sinense, while they were upregulated in C. goeringii. Moreover, gibberellin and cytokinin genes were also downregulated in C. ensifolium and C. sinense flowers, while they were upregulated in C. goeringii, suggesting that species may vary in their responses. The data mining thus, outsources the valuable information to direct future research on orchids at industrial levels.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoling Shi
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
3
|
Jiang L, Jiang X, Li Y, Gao Y, Wang S, Ma Y, Wang G. FT-like paralogs are repressed by an SVP protein during the floral transition in Phalaenopsis orchid. PLANT CELL REPORTS 2022; 41:233-248. [PMID: 34713321 DOI: 10.1007/s00299-021-02805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
An SVP protein, PhSVP, bound to the CArG-boxes in the promoter regions of FT-like paralogs and repressed their expression, thus affecting the floral transition in Phalaenopsis orchid. Phalaenopsis is an important ornamental flower native to tropical rain forests. It usually reaches vegetative maturity after 4-5 leaves and, after a juvenile stage, forms a flower spike (inflorescence) from the axillary buds. The PEBP gene family encodes a phosphatidyl-ethanolamine-binding protein (PEBP) domain involved in regulating flowering and other aspects of plant development. Here, we identified eight PEBP family genes in Phalaenopsis and detected the expression patterns of seven of them in various organs. Among them, PhFT1 (Phalaenopsis hybrid FLOWERING LOCUS T1), PhFT3, PhFT5, and PhMFT (Phalaenopsis hybrid MOTHER OF FT AND TFL1) promoted flowering in transgenic Arabidopsis, while PhFT6 inhibited flowering. PhSVP (Phalaenopsis hybrid SHORT VEGETATIVE PHASE), an SVP protein that repressed flowering in Arabidopsis, bound to the CArG-boxes in the promoter regions of PhFT3, PhFT6, and PhMFT in a yeast one-hybrid assay. Additionally, dual-luciferase and transient expression assays showed that PhSVP significantly inhibits the expression of both PhFT3 and PhFT6. Together, our work provides a comprehensive understanding of the PhFT-like genes that can promote or repress flowering, and it suggests strategies for regulating the floral transition in Phalaenopsis that exploit the evolutionary versatility of PhFTs to respond to various signals stimuli.
Collapse
Affiliation(s)
- Li Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanna Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongxia Gao
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyao Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuehua Ma
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangdong Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Kaur S. In Vitro Florigenesis with Special Reference to Orchids- A Review. Recent Pat Biotechnol 2022; 16:311-318. [PMID: 35430983 DOI: 10.2174/1872208316666220415124439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Orchids are widely used in floriculture as attractive cut flowers all over the world. The current paper reviews factors affecting the in vitro flowering in orchid species. METHODS The phenomenon of in vitro flowering is advantageous as it shortens the breeding cycle, which is prolonged in the in vivo grown orchid species of commercial value. Certain genetic and biochemical mechanisms are involved at the time of onset of flowering in orchid plants. In the present endeavour, efforts have been made to initiate in vitro flowering in terrestrial and epiphytic orchid species. Various phenomenon involved during transition of vegetative shoot apex into floral axis is also reviewed. RESULTS In vitro flowering was induced in Dendrobium nobile and Zeuxine strateumatica in Mitra medium supplemented with BAP at 0.5 in mgl-1. CONCLUSION In vitro flowering can be initiated by manipulating physical and chemical stimulus in the nutrient regime. The study would be helpful in better understanding the complex process of flowering in vitro as well as ex vitro.
Collapse
Affiliation(s)
- Saranjeet Kaur
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Distt.- Mohali, Punjab, India
| |
Collapse
|
5
|
Muhammad-Asyraf Khairul-Anuar, Mazumdar P, Lum S, Harikrishna JA. Dendrobium Hybrid Flower Number and Pedicel Curvature is Influenced by the Application of Gibberellic Acid and Indole-3-acetic Acid. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021130057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ahmad S, Lu C, Gao J, Ren R, Wei Y, Wu J, Jin J, Zheng C, Zhu G, Yang F. Genetic insights into the regulatory pathways for continuous flowering in a unique orchid Arundina graminifolia. BMC PLANT BIOLOGY 2021; 21:587. [PMID: 34893019 PMCID: PMC8662845 DOI: 10.1186/s12870-021-03350-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Manipulation of flowering time and frequency of blooming is key to enhancing the ornamental value of orchids. Arundina graminifolia is a unique orchid that flowers year round, although the molecular basis of this flowering pattern remains poorly understood. RESULTS We compared the A. graminifolia transcriptome across tissue types and floral developmental stages to elucidate important genetic regulators of flowering and hormones. Clustering analyses identified modules specific to floral transition and floral morphogenesis, providing a set of candidate regulators for the floral initiation and timing. Among candidate floral homeotic genes, the expression of two FT genes was positively correlated with flower development. Assessment of the endogenous hormone levels and qRT-PCR analysis of 32 pathway-responsive genes supported a role for the regulatory networks in floral bud control in A. graminifolia. Moreover, WGCNA showed that flowering control can be delineated by modules of coexpressed genes; especially, MEgreen presented group of genes specific to flowering. CONCLUSIONS Candidate gene selection coupled with hormonal regulators brings a robust source to understand the intricate molecular regulation of flowering in precious orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jieqiu Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuanyuan Zheng
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
7
|
Ahmad S, Lu C, Wei Y, Gao J, Jin J, Zheng C, Zhu G, Yang F. Stage Specificity, the Dynamic Regulators and the Unique Orchid Arundina graminifolia. Int J Mol Sci 2021; 22:ijms222010935. [PMID: 34681593 PMCID: PMC8535972 DOI: 10.3390/ijms222010935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Orchids take years to reach flowering, but the unique bamboo orchid (Arundina graminifolia) achieves reproductive maturity in six months and then keeps on year round flowering. Therefore, studying different aspects of its growth, development and flowering is key to boost breeding programs for orchids. This study uses transcriptome tools to discuss genetic regulation in five stages of flower development and four tissue types. Stage specificity was focused to distinguish genes specifically expressed in different stages of flower development and tissue types. The top 10 highly expressed genes suggested unique regulatory patterns for each stage or tissue. The A. graminifolia sequences were blasted in Arabidopsis genome to validate stage specific genes and to predict important hormonal and cell regulators. Moreover, weighted gene co-expression network analysis (WGCNA) modules were ascertained to suggest highly influential hubs for early and late stages of flower development, leaf and root. Hormonal regulators were abundant in all data sets, such as auxin (LAX2, GH3.1 and SAUR41), cytokinin (LOG1), gibberellin (GASA3 and YAB4), abscisic acid (DPBF3) and sucrose (SWEET4 and SWEET13). Findings of this study, thus, give a fine sketch of genetic variability in Orchidaceae and broaden our understanding of orchid flower development and the involvement of multiple pathways.
Collapse
|
8
|
Wang SL, Viswanath KK, Tong CG, An HR, Jang S, Chen FC. Floral Induction and Flower Development of Orchids. FRONTIERS IN PLANT SCIENCE 2019; 10:1258. [PMID: 31649713 PMCID: PMC6795766 DOI: 10.3389/fpls.2019.01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 05/19/2023]
Abstract
Orchids comprise one of the largest, most highly evolved angiosperm families, and form an extremely peculiar group of plants. Various orchids are available through traditional breeding and micro-propagation since they are valuable as potted plants and/or cut flowers in horticultural markets. The flowering of orchids is generally influenced by environmental signals such as temperature and endogenous developmental programs controlled by genetic factors as is usual in many flowering plant species. The process of floral transition is connected to the flower developmental programs that include floral meristem maintenance and floral organ specification. Thanks to advances in molecular and genetic technologies, the understanding of the molecular mechanisms underlying orchid floral transition and flower developmental processes have been widened, especially in several commercially important orchids such as Phalaenopsis, Dendrobium and Oncidium. In this review, we consolidate recent progress in research on the floral transition and flower development of orchids emphasizing representative genes and genetic networks, and also introduce a few successful cases of manipulation of orchid flowering/flower development through the application of molecular breeding or biotechnology tools.
Collapse
Affiliation(s)
- Shan-Li Wang
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Kotapati Kasi Viswanath
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chii-Gong Tong
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Hye Ryun An
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, South Korea
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| |
Collapse
|
9
|
Novak SD, Luna LJ, Gamage RN. Role of auxin in orchid development. PLANT SIGNALING & BEHAVIOR 2014; 9:e972277. [PMID: 25482818 PMCID: PMC4622584 DOI: 10.4161/psb.32169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 05/07/2023]
Abstract
Auxin's capacity to regulate aspects of plant development has been well characterized in model plant systems. In contrast, orchids have received considerably less attention, but the realization that many orchid species are endangered has led to culture-based propagation studies which have unveiled some functions for auxin in this system. This mini-review summarizes the many auxin-mediated developmental responses in orchids that are consistent with model systems; however, it also brings to the forefront auxin responses that are unique to orchid development, namely protocorm formation and ovary/ovule maturation. With regard to shoot establishment, we also assess auxin's involvement in orchid germination, PLB formation, and somatic embryogenesis. Further, it makes evident that auxin flow during germination of the undifferentiated, but mature, orchid embryo mirrors late embryogenesis of typical angiosperms. Also discussed is the use of orchid protocorms in future phytohormone studies to better understand the mechanisms behind meristem formation and organogenesis.
Collapse
Key Words
- 2,4-D, 2,4-dichlorophenoxyacetic acid
- BA, benzyladenine
- BAP, 6-Benzylaminopurine
- CW, coconut water
- GA, gibberellic acid
- IAA, indolacetic acid
- IBA, indolbutyric acid
- JA, jasomonic acid
- KN, kinetin
- NAA, 1-naphthalenacetic acid
- NPA, 1-n-naphthylphthalamic acid
- PAT
- PAT, polar auxin transport
- PLB, protocorm-like body
- TIBA, 2,3,5-triiodobenzoic acid
- TZD, thidiazuron
- auxin
- floral senescence
- germination
- meristem
- orchids
- protocorm
- rhizogenesis
- trichomes
Collapse
Affiliation(s)
- Stacey D. Novak
- Department of Biology; University of La Verne; La Verne, CA USA
| | - Lila J. Luna
- Department of Biology; University of La Verne; La Verne, CA USA
| | - Roshan N. Gamage
- Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago, IL USA
| |
Collapse
|
10
|
Teixeira da Silva JA, Kerbauy GB, Zeng S, Chen Z, Duan J. In vitroflowering of orchids. Crit Rev Biotechnol 2013; 34:56-76. [DOI: 10.3109/07388551.2013.807219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH. Research on orchid biology and biotechnology. PLANT & CELL PHYSIOLOGY 2011; 52:1467-86. [PMID: 21791545 DOI: 10.1093/pcp/pcr100] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Orchidaceae constitute one of the largest families of angiosperms. They are one of the most ecological and evolutionary significant plants and have successfully colonized almost every habitat on earth. Because of the significance of plant biology, market needs and the current level of breeding technologies, basic research into orchid biology and the application of biotechnology in the orchid industry are continually endearing scientists to orchids in Taiwan. In this introductory review, we give an overview of the research activities in orchid biology and biotechnology, including the status of genomics, transformation technology, flowering regulation, molecular regulatory mechanisms of floral development, scent production and color presentation. This information will provide a broad scope for study of orchid biology and serve as a starting point for uncovering the mysteries of orchid evolution.
Collapse
Affiliation(s)
- Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|