Lechowicz W, Maternicka K, Faltynowicz M, Poskuta J. Effect of light intensity on pigments and main acyl lipids during 'natural' chloroplast development in wheat seedlings.
PHOTOSYNTHESIS RESEARCH 1986;
8:133-147. [PMID:
24443210 DOI:
10.1007/bf00035244]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/1985] [Revised: 05/11/1985] [Indexed: 06/03/2023]
Abstract
The content and composition of pigments and acyl lipids (monogalactosyl diacylglycerol, digalactosyl diacylglycerol and phosphatidyl glycerol) have been investigated in developing chloroplasts isolated from successive 2-cm sections along the leaves of wheat seedlings grown either under 100, 30 or 3 W·m(-2). In all examined stages of plastid development chlorophyll a/b and chlorophyll/carotenoid ratios were higher with increasing irradiance, whereas chlorophyll content expressed on fresh weight basis gradually decreased.Concentrations of monogalactosyl diacylglycerol, digalactosyl diacylglycerol and phosphatidyl glycerol decreased per chlorophyll unit with increasing plastid maturity. The higher was the light intensity applied during plant growth, the higher were galactolipid and phosphatidyl glycerol contents in developing chloroplasts. During plastid development the percentage of α-linolenic acid markedly increased in total and individual acyl lipids. Under high light conditions, the accumulation of this fatty acid proceeded more rapidly. Significantly higher proportion of α-linolenic acid was found in acyl lipid fraction of chloroplasts differentiating in high light grown plants, than in those from plants exposed to lower light intensities. The differences in the double bond index may indicate higher fluidity of thylakoid membranes in sun-type chloroplasts.Trans-3Δ-hexadecenoic acid, virtually absent in the youngest plastids, was found in much higher concentration (per chlorophyll unit and as mol % of phosphatidyl glycerol fatty acids) in chloroplasts developing at high light conditions.
Collapse