1
|
Medina DM, Acevedo-Gomez AV, Pellegrini Malpiedi L, Leiva LC. Biochemical characterization of acid proteases from the stomach of palometa (Pygocentrus nattereri, Kner 1858) with potential industrial application. Int J Biol Macromol 2024; 264:130548. [PMID: 38431015 DOI: 10.1016/j.ijbiomac.2024.130548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Pepsin is one of the major enzymes with significant importance in the food industry, biomedicines, and pharmaceutical formulations. In this work, the main objective was to biochemically characterize a pepsin-like enzymatic extract obtained from Pygocentrus nattereri, a predatory freshwater fish, focusing on their potential industrial application. The obtained extract exhibited optimal activity at 45 °C and pH 1.0-2.0. These proteases remained stable after 2 h of incubation at temperatures ranging from 0° to 45 °C and within pH range of 1.0 to 7.0. Their activity was significantly affected in presence of pepstatin A and SDS, 10 μM and 3.46 mM respectively, while EDTA and PMSF showed partial inhibitory effects. Divalent cations (Ca2+ and Mg2+) did not inhibit the proteolytic activity of the extract; in fact, it improved at a 5 mM CaCl2 concentration. As the NaCl concentration increased, the enzyme activity decreased. However, after desalination, 90 % of the activity was recovered within the tested exposure time. Besides, this extract demonstrated exceptional versatility across diverse industrial applications, including collagen extraction augmentation, IgG hydrolysis facilitation, and silver and polyester recovery from X-ray films. Our results suggest that the obtained enzymatic extract has a wide range of potential applications.
Collapse
Affiliation(s)
- D M Medina
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina; Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), CONICET-UNR, Mitre 1998, 2000 Rosario, Argentina.
| | - A V Acevedo-Gomez
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina
| | - L Pellegrini Malpiedi
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), CONICET-UNR, Mitre 1998, 2000 Rosario, Argentina.
| | - L C Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA, CONICET, FACENA, UNNE, Campus "Deodoro Roca" Av. Libertad N°5460, 3400 Corrientes, Argentina.
| |
Collapse
|
2
|
Friedman IS, Fernández-Gimenez AV. State of knowledge about biotechnological uses of digestive enzymes of marine fishery resources: A worldwide systematic review. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
3
|
Extraction, purification and characterization of a thermally stable aspartic protease from freshwater shrimp Gammarus sp. with a high catalytic efficiency. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Biochemical characterization of a semi-purified aspartic protease from sea catfish Bagre panamensis with milk-clotting activity. Food Sci Biotechnol 2019; 28:1785-1793. [PMID: 31807351 DOI: 10.1007/s10068-019-00614-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Pepsin from stomach of Bagre panamensis was semi-purified and biochemically characterized. The acid proteolytic activity and purification fold were 3875 U/mg protein and 91.85, respectively, after purification process. The optimum pH and temperature for semi-purified protease were 2-3 and 65 °C, respectively. The enzyme activity was stable after heating proteases at 50 °C for 120 min, but only 30% residual activity was detected after heating at 65 °C for 30 min. SDS-PAGE analysis showed two proteins bands after dialysis (26.1 and 38.6 kDa). Only the band of 38.6 kDa had proteolytic activity, which was inhibited using pepstatin A. Organic solvents, surfactants and reducing agents affect the proteolytic activity at different extent; however, metal ions or EDTA have no impact on protease activity. The semi-purified protease exhibited milk coagulant activity, with a maximum activity at 45 °C. The obtained results highlight the potential biotechnological use of B. panamensis pepsin.
Collapse
|
6
|
Francisco CC, Luis CLJ, Marina EBJ, Javier CMF, Alexis LZA, Del Carmen SOH, Alfredo REI. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Protein Pept Lett 2019; 26:532-541. [PMID: 30950340 DOI: 10.2174/0929866526666190405124353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. OBJECTIVE In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. METHODS Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. RESULTS It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. CONCLUSION In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.
Collapse
Affiliation(s)
- Cadena-Cadena Francisco
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Cárdenas-López José Luis
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | | | | | | | | |
Collapse
|
7
|
Digestive enzyme ratios are good indicators of hatchling yolk reserve and digestive gland maturation in early life stages of cuttlefish Sepia officinalis L.: application of these new tools in ecology and aquaculture. J Comp Physiol B 2017; 188:57-76. [PMID: 28691154 DOI: 10.1007/s00360-017-1115-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/17/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
In Sepia officinalis (Linnaeus, 1758), the digestive gland matures during the first month post-hatching, while a shift from intracellular acid to extracellular alkaline digestion occurs. The purpose of this study was to investigate the possibility of using enzymatic ratios for the description of digestive system maturation in early life stages of S. officinalis. Second, it is intended to apply these new tools as eco-physiological indicators for understanding the impact of cuttlefish eggs' life history from different spawning sites of the English Channel on digestive performance of juveniles. An experimental rearing was performed over 35 days after hatching (DAH) on juveniles from wild collected eggs in 2010 and 2011. Four digestive enzyme activities and their ratios [i.e., trypsin, cathepsin, acid (ACP), and alkaline (ALP) phosphatase, ALP/ACP, and trypsin/cathepsin] were studied along with histological features (e.g., internal yolk surface and digestive gland development). The two enzyme ratios were good indicators of digestive system maturation allowing the study of the digestive gland's development. They were highly correlated to juveniles' weight increase and histological features of the gland in early DAH. These ratios described more accurately the shift occurring between the intracellular acid and the extracellular alkaline modes of digestion in S. officinalis and were more specific than separated enzyme activities. Their application as eco-physiological tools revealed that enzyme ratios reflected yolk content and digestive gland development in new hatching juveniles. Finally, ALP/ACP ratio was shown to be a powerful tool to describe growth performance of S. officinalis which is useful for aquaculture optimization.
Collapse
|
8
|
Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius). Comp Biochem Physiol B Biochem Mol Biol 2017; 211:8-15. [PMID: 28323073 DOI: 10.1016/j.cbpb.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/30/2022]
Abstract
Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na2CO3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na+ and K+ concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance.
Collapse
|
9
|
New acidic proteases from Liza aurata viscera: Characterization and application in gelatin production. Int J Biol Macromol 2016; 92:533-542. [DOI: 10.1016/j.ijbiomac.2016.07.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/09/2016] [Accepted: 07/18/2016] [Indexed: 11/23/2022]
|
10
|
Zhang Y, Liu Y, Guo H, Jiang W, Dong P, Liang X. Site-directed mutagenesis of porcine pepsin: Possible role of Asp32, Thr33, Asp215 and Gly217 in maintaining the nuclease activity of pepsin. Enzyme Microb Technol 2016; 89:69-75. [PMID: 27233129 DOI: 10.1016/j.enzmictec.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/09/2016] [Accepted: 03/28/2016] [Indexed: 12/01/2022]
Abstract
Site-directed mutagenesis of porcine pepsin was performed to identify its active sites that regulate nucleic acid (NA) digestion activity and to analyze the mechanism pepsin-mediated NA digestion. The mutation sites were distributed at the catalytic center of the enzyme (T33A, G34A, Y75H, T77A, Y189H, V214A, G217A and S219A) and at its active site (D32A and D215A) for protein digestion. Mutation of the active site residues Asp32 and Asp215 led to the inactivation of pepsin (both the NA and protein digestion activity), which demonstrated that the active sites of the pepsin protease activity were also important for its nuclease activity. Analysis of the variants revealed that T33A and G217A mutants showed a complete loss of NA digestion activity. In conclusion, residues Asp32, Thr33, Asp215 and Gly217 were related to the pepsin active sites for NA digestion. Moreover, the Y189H and V214A variants showed a loss of digestion activity on double-strand DNA (dsDNA) but only a decrease in digestion activity on single-strand DNA (ssDNA). On the contrary, the G34A variant showed a loss of digestion activity on ssDNA but only a decrease in digestion activity on dsDNA. Our findings are the first to identify the active sites of pepsin nuclease activity and lay the framework for further study of the mechanism of pepsin nuclease activity.
Collapse
Affiliation(s)
- Yanfang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Innovation and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hui Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wei Jiang
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Salazar-Leyva JA, Lizardi-Mendoza J, Ramirez-Suarez JC, Lugo-Sanchez ME, Valenzuela-Soto EM, Ezquerra-Brauer JM, Castillo-Yañez FJ, Pacheco-Aguilar R. Catalytic and Operational Stability of Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on a Partially Deacetylated Chitin Support. J Food Biochem 2016. [DOI: 10.1111/jfbc.12287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jesus Aaron Salazar-Leyva
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
- Universidad Politécnica de Sinaloa. Unidad Académica de Ingeniería en Biotecnología. Carretera Municipal Libre Mazatlán-Higueras; C.P. 82199 Mazatlán Sinaloa México
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Juan Carlos Ramirez-Suarez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Maria Elena Lugo-Sanchez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Elisa Miriam Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Josafat Marina Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Francisco Javier Castillo-Yañez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Ramon Pacheco-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| |
Collapse
|
12
|
Wald M, Rehbein H, Beermann C, Bußmann B, Schwarz K. Purification and characterization of pepsinogen and pepsin from the stomach of rainbow trout (Oncorhynchus mykiss). Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2692-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Miura Y, Kageyama T, Moriyama A. Pepsinogens and pepsins from largemouth bass, Micropterus salmoides: purification and characterization with special reference to high proteolytic activities of bass enzymes. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:42-8. [PMID: 25608034 DOI: 10.1016/j.cbpb.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/30/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022]
Abstract
Six pepsinogens were purified from the gastric mucosa of largemouth bass (Micropterus salmoides) by DEAE-Sephacel chromatography, Sephadex G-100 gel filtration, and Mono Q FPLC. The potential specific activities of two major pepsinogens, PG1-1 and PG2-2, against hemoglobin were 51 and 118 units/mg protein, respectively. The activity of pepsin 2-2 was the highest among the pepsins reported to date; this might be linked to the strongly carnivorous diet of the largemouth bass. The molecular masses of PG1-1 and PG2-2 were 39.0 and 41.0 kDa, respectively. The N-terminal amino acid sequences of PG1-1 and PG2-2 were LVQVPLEVGQTAREYLE- and LVRLPLIVGKTARQALLE-, respectively, showing similarities with those of fish type-A pepsinogens. The optimal pHs for hemoglobin-digestive activity of pepsins 1-1 and 2-2 were around 1.5 and 2.0, respectively, though both pepsins retained considerable activity at pHs over 3.5. They showed maximal activity around 50 and 40 °C, respectively. They were inhibited by pepstatin similarly to porcine pepsin A. The cleavage specificities clarified with oxidized insulin B chain were shown to be restricted to a few bonds consisting of hydrophobic/aromatic residues, such as the Leu(15)-Tyr(16), Phe(24)-Phe(25) and Phe(25)-Tyr(26) bonds. When hemoglobin was used as a substrate, the kcat/Km value of bass pepsin 2-2 was 4.6- to 36.8-fold larger than those of other fish pepsins. In the case of substance P, an ideal pepsin substrate mimic, the kcat/Km values were about 200-fold larger than those of porcine pepsin A, supporting the high activity of the bass pepsin.
Collapse
Affiliation(s)
- Yoko Miura
- Division of Biomolecular Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan; Department of Health and Nutrition, Nagoya Bunri University, Inazawa 492-8213, Japan.
| | - Takashi Kageyama
- Department of Health and Nutrition, Nagoya Bunri University, Inazawa 492-8213, Japan.
| | - Akihiko Moriyama
- Division of Biomolecular Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan.
| |
Collapse
|
14
|
RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:37-44. [PMID: 25090194 DOI: 10.1016/j.cbd.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022]
Abstract
The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition.
Collapse
|
15
|
Salazar-Leyva JA, Lizardi-Mendoza J, Ramirez-Suarez JC, Valenzuela-Soto EM, Ezquerra-Brauer JM, Castillo-Yañez FJ, Pacheco-Aguilar R. Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on Shrimp Waste Chitin and Chitosan Supports: Searching for a By-product Catalytic System. Appl Biochem Biotechnol 2013; 171:795-805. [DOI: 10.1007/s12010-013-0407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
16
|
Dong ZD, Zhang J, Ji XS, Zhou FN, Fu Y, Chen W, Zeng YQ, Li TM, Wang H. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2012; 33:1207-1214. [PMID: 23009921 DOI: 10.1016/j.fsi.2012.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.
Collapse
Affiliation(s)
- Zhong-dian Dong
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Feng T, Zhang H, Liu H, Zhou Z, Niu D, Wong L, Kucuktas H, Liu X, Peatman E, Liu Z. Molecular characterization and expression analysis of the channel catfish cathepsin D genes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:164-169. [PMID: 21558007 DOI: 10.1016/j.fsi.2011.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Cathepsin D is a lysosomal aspartic proteinase that participates in various degradation functions of the cell. In this study, we characterized the cathepsin D genes in channel catfish and found two genes encoding catfish cathepsin D, referred to as cathepsin D1 and D2 genes. These two genes are highly similar in genomic structure and organization, sharing a moderate level of amino acid sequence similarity (56%). Genomic Southern analysis suggested the presence of a single copy of each of the cathepsin D1 and D2 genes. Phylogenetic analysis provided strong evidence that two cathepsin D genes are present in most of the teleost lineage, with cathepsin D2 likely having been lost in some higher vertebrate lineages. The catfish cathepsin D1 and D2 genes are expressed in virtually all the 11 tested tissues (brain, gill, heart, head kidney, trunk kidney, intestine, liver, muscle, skin, spleen, and stomach) on the transcript level, but appear to exhibit greater levels of expression in immune-related tissues and organs. Upon infection with Edwardsiella ictaluri, the expression of the catfish cathepsin D genes showed the most significant changes in liver and head kidney, with time points and magnitude of transcript changes varying between the two genes. We additionally examined bacterially-mediated changes of expression in gill, intestine, and trunk kidney. The fact that bacterial infection can induce expression of the cathepsin D genes and that they appeared to be expressed naturally at higher levels in immune-related organs may suggest that they are an important component of the innate immune response of catfish against bacterial infections.
Collapse
Affiliation(s)
- Tingting Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nalinanon S, Benjakul S, Kishimura H. Purification and biochemical properties of pepsins from the stomach of skipjack tuna (Katsuwonus pelamis). Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1275-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Zhou J, Cai ZH, Li L, Gao YF, Hutchinson TH. A proteomics based approach to assessing the toxicity of bisphenol A and diallyl phthalate to the abalone (Haliotis diversicolor supertexta). CHEMOSPHERE 2010; 79:595-604. [PMID: 20189630 DOI: 10.1016/j.chemosphere.2010.01.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/13/2010] [Accepted: 01/28/2010] [Indexed: 05/28/2023]
Abstract
The contamination of marine ecosystems by endocrine disrupting compounds (EDCs) is of great concern. Protein expression profile maybe a good method to help us understand the molecular mechanisms of EDCs-toxicity to aquatic organisms. In this study, the abalone (Haliotis diversicolor supertexta), was selected as the target organism. Toxicological effects of two reference endocrine disruptors: diallyl phthalate (DAP, 50microgL(-1)) and bisphenol-A (BPA, 100microgL(-1)) were investigated after a three months static-renewal exposure on abalones using proteomics to analyze their hepatopancreas tissues. Some enzyme activity parameters of hepatopancreas extracts were also performed, including Na(+)-K(+)-ATPase, Ca(2+)-Mg(2+)-ATPase, peroxidase (POD) and malondialdehyde (MDA) production. After analyzing the proteomics profile of hepatopancreas by 2D gel electrophoresis, we found that 24 spots significantly increased or decreased at protein expression level (2-fold difference) in the 2D-maps from the treatment groups. Eighteen out of 24 protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly categorized into diverse functional classes such as detoxification, oxidative stress, hormone regulating, cellular metabolism and innate immunity. In addition, the enzymatic results indicated that DAP/BPA exposure affected the oxidative stress status and the cellular homeostasis, which partly corroborated the proteomics' results. Taken together, these data demonstrate that proteomics is a powerful tool to provide valuable insights into possible mechanisms of toxicity of EDCs contaminants in aquatic species. Additionally, the results highlight the potential of abalone as a valuable candidate for investigating EDCs impacts on marine ecosystems.
Collapse
Affiliation(s)
- Jin Zhou
- Life Sciences Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | | | | | | | | |
Collapse
|
20
|
Ahn SJ, Kim NY, Seo JS, Je JE, Sung JH, Lee SH, Kim MS, Kim JK, Chung JK, Lee HH. Molecular cloning, mRNA expression and enzymatic characterization of cathepsin F from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:211-20. [DOI: 10.1016/j.cbpb.2009.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/29/2022]
|
21
|
Jia A, Zhang XH. Molecular cloning, characterization and expression analysis of cathepsin D gene from turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2009; 26:606-613. [PMID: 18948209 DOI: 10.1016/j.fsi.2008.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/11/2008] [Accepted: 09/20/2008] [Indexed: 05/27/2023]
Abstract
Cathepsin D is a lysosomal endoproteolytic aspartic proteinase which also has been found in endosomes of macrophage. It is thought to play key roles in the developmental and physiological process of animals. The EST sequence of turbot (Scophthalmus maximus L.) cathepsin D was obtained from a subtractive cDNA library. In the present study, 5'-RACE and 3'-RACE were carried out to obtain the complete cDNA sequence of turbot cathepsin D, which contained a 91 bp 5'-UTR, a 1191 bp open reading frame encoding 396 amino acids, and a 329 bp 3'-UTR. The deduced amino acid sequence of the cathepsin D consisted of a signal peptide of 18 aa, a leader peptide extending 43 aa, and a mature peptide of 335 aa. BLAST analysis revealed that turbot cathepsin D shared high similarity with other known cathepsin D, and it showed significant homology with that of Barramundi (Lates calcarifer B., 89% aa similarity). Quantitative real-time PCR (q PCR) demonstrated that the highest expression level of the turbot cathepsin D was in liver. After turbot were challenged with Vibrio harveyi, the lowest expression levels of cathepsin D in liver, spleen and head kidney were detected at 8 h. This result was different from the expression of MHCII of which the expression lever was increased upon challenge. The expression levels of cathepsin D in liver and head kidney increased gradually after 8 h and exceeded the background level after 24 h. In spleen, the expression level was reinforced after 8 h and kept at level that was higher than the original level after 12 h. The results suggested that cathepsin D might process antigens for presentation to the immune system and have synergetic effect with apoptosis pathway until 12 h after injection.
Collapse
Affiliation(s)
- Airong Jia
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | |
Collapse
|
22
|
De Luca V, Maria G, De Mauro G, Catara G, Carginale V, Ruggiero G, Capasso A, Parisi E, Brier S, Engen JR, Capasso C. Aspartic proteinases in Antarctic fish. Mar Genomics 2009; 2:1-10. [PMID: 21798166 DOI: 10.1016/j.margen.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/09/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
The present review surveys several recent studies of the aspartic proteinases from Antarctic Notothenioidei, a dominating fish group that has developed a number of adjustments at the molecular level to maintain metabolic function at low temperatures. Given the unique peculiarities of the Antarctic environment, studying the features of Antarctic aspartic proteinases could provide new insights into the role of these proteins in fish physiology. We describe here: (1) the biochemical properties of a cathepsin D purified from the liver of the hemoglobinless icefish Chionodraco hamatus; (2) the biochemical characterization of Trematomus bernacchii pepsins variants A1 and A2 obtained by heterologous expression in bacteria; and (3) the identification of two closely related, novel aspartic proteinases from the liver of the two Antarctic fish species mentioned above. Overall, the results show that Notothenioidei aspartic proteinases display a number of characteristics that are remarkably different from those of mammalian aspartic proteinases, including high turnover number or high catalytic efficiency. We have named the newly identified aspartic proteinases "Nothepsins" and classified them relative to aspartic proteinases from other species.
Collapse
Affiliation(s)
- Viviana De Luca
- CNR, Institute of Protein Biochemistry, Via P. Castellino 111-80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Structural and phylogenetic comparison of three pepsinogens from Pacific bluefin tuna: Molecular evolution of fish pepsinogens. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:9-19. [DOI: 10.1016/j.cbpb.2008.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/09/2008] [Accepted: 08/10/2008] [Indexed: 11/20/2022]
|
24
|
Feng S, Li W, Lin H. Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:275-84. [DOI: 10.1016/j.cbpb.2007.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/21/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
25
|
ACTIVITY DISTRIBUTION OF DIGESTIVE PROTEASES FROM NEMIPTERUS VIRGATUS AND THEIR RESPONSES TO pH VALUE AND TEMPERATURE. J FOOD PROCESS ENG 2008. [DOI: 10.1111/j.1745-4530.2007.00141.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Brier S, Maria G, Carginale V, Capasso A, Wu Y, Taylor RM, Borotto NB, Capasso C, Engen JR. Purification and characterization of pepsins A1 and A2 from the Antarctic rock cod Trematomus bernacchii. FEBS J 2007; 274:6152-66. [PMID: 17976195 PMCID: PMC2533623 DOI: 10.1111/j.1742-4658.2007.06136.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Antarctic notothenioid Trematomus bernacchii (rock cod) lives at a constant mean temperature of -1.9 degrees C. Gastric digestion under these conditions relies on the proteolytic activity of aspartic proteases such as pepsin. To understand the molecular mechanisms of Antarctic fish pepsins, T. bernacchii pepsins A1 and A2 were cloned, overexpressed in Escherichia coli, purified and characterized with a number of biochemical and biophysical methods. The properties of these two Antarctic isoenzymes were compared to those of porcine pepsin and found to be unique in a number of ways. Fish pepsins were found to be more temperature sensitive, generally less active at lower pH and more sensitive to inhibition by pepstatin than their mesophilic counterparts. The specificity of Antarctic fish pepsins was similar but not identical to that of pig pepsin, probably owing to changes in the sequence of fish enzymes near the active site. Gene duplication of Antarctic rock cod pepsins is the likely mechanism for adaptation to the harsh temperature environment in which these enzymes must function.
Collapse
Affiliation(s)
- Sébastien Brier
- Department of Chemistry & Chemical Biology and The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Giovanna Maria
- CNR. Institute of Protein Biochemistry, via Pietro Castellino 111, I-80131 Naples, Italy
| | - Vincenzo Carginale
- CNR. Institute of Protein Biochemistry, via Pietro Castellino 111, I-80131 Naples, Italy
| | - Antonio Capasso
- CNR. Institute of Protein Biochemistry, via Pietro Castellino 111, I-80131 Naples, Italy
| | - Yan Wu
- Department of Chemistry & Chemical Biology and The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Robert M. Taylor
- Department of Chemistry & Chemical Biology and The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Nicholas B. Borotto
- Department of Chemistry & Chemical Biology and The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Clemente Capasso
- CNR. Institute of Protein Biochemistry, via Pietro Castellino 111, I-80131 Naples, Italy
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
27
|
Cathepsin D from Atlantic cod (Gadus morhua L.) liver. Isolation and comparative studies. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:504-11. [PMID: 17428719 DOI: 10.1016/j.cbpb.2007.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The isolated cathepsin D-like enzyme from Atlantic cod (Gadus morhua L.) liver was shown to be a monomer with a molecular mass of approximately 40 kDa. It was inhibited by Pepstatin A and had an optimum for degradation of haemoglobin at pH 3.0. The purified enzyme had lower temperature stability than bovine cathepsin D. Antibodies raised against the purified enzyme and against two C-terminal peptides of cod cathepsin D recognized a 40 kDa protein in immunoblotting of the samples from the purification process. Both antisera showed cross reactivity with a similar sized protein in liver from cod, saithe (Pollachius virens L.), Atlantic herring (Clupea harengus L.) and Atlantic salmon (Salmo salar L.). A protein of same size was detected in wolffish (Anarhichas lupus L.) liver with the antibody directed against the purified enzyme. This antibody also recognized the native enzyme and detected the presence of cathepsin D in muscle of cod, saithe, herring and salmon. These antibodies may be useful in understanding the mechanisms of post mortem muscle degradation in fish by comparing immunohistochemical localization and enzyme activity, in particular in cod with different rate of muscle degradation. They may also be used for comparing muscle degradation in different fish species.
Collapse
|
28
|
Carginale V, Trinchella F, Capasso C, Scudiero R, Parisi E. Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature. Gene 2004; 336:195-205. [PMID: 15246531 DOI: 10.1016/j.gene.2004.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 03/17/2004] [Accepted: 04/22/2004] [Indexed: 11/30/2022]
Abstract
Cold-adapted organisms have developed a number of adjustments at the molecular level to maintain metabolic functions at low temperatures. Among other features, they can produce enzymes characterized by a high turnover number or a high catalytic efficiency. The present work is aimed at investigating the process of food digestion at low temperature through the study of pepsins in Antarctic notothenioids. For such a purpose, we have cloned and sequenced three forms of pepsin A and a single form of gastricsin from the gastric mucosa of Trematomus bernacchii (rock cod). Phylogenetic analysis has suggested that the three pepsin A isotypes arose from two gene duplication events leading to the most ancestral pepsin A3 and to the most recent forms represented by pepsin A1 and pepsin A2. Molecular modeling has unraveled significant structural differences in these enzymes with respect to their mesophilic counterparts. Hydropathy and flexibility determined on the substrate-binding subsites of Antarctic and mesophilic pepsins have shown for pepsin A2 reduced hydropathy and increased flexibility at the level of the substrate cleft, features typical of cold-adapted enzymes. Northern blot analysis of RNA from rock cod gastric mucosa hybridized with molecular probes designed on specific regions of different pepsin forms has shown that rock cod pepsin genes are expressed at comparable levels. The present results suggest that the Antarctic rock cod adopted two different strategies to accomplish efficient protein digestion at low temperature. One mechanism is the gene duplication that increases enzyme production to compensate for the reduced kinetic efficiency, the other is the expression of a new enzyme provided with features typical of cold-adapted enzymes.
Collapse
MESH Headings
- Acclimatization/genetics
- Amino Acid Sequence
- Animal Nutritional Physiological Phenomena
- Animals
- Antarctic Regions
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Cold Temperature
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Amplification
- Gene Expression Regulation, Enzymologic
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Models, Molecular
- Molecular Sequence Data
- Pepsin A/chemistry
- Pepsin A/genetics
- Pepsin A/metabolism
- Perciformes/genetics
- Perciformes/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Structural Homology, Protein
Collapse
Affiliation(s)
- Vincenzo Carginale
- CNR Institute of Protein Biochemistry, via Marconi 10, 80125 Napoli, Italy
| | | | | | | | | |
Collapse
|
29
|
Castillo-Yañez FJ, Pacheco-Aguilar R, Garcia-Carreño FL, Toro MDLAND. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem 2004. [DOI: 10.1016/j.foodchem.2003.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Comparative Studies of the Proteolytic Activity of Crude Extracts from the Digestive Tract of Three Shark Species. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2002. [DOI: 10.1300/j030v11n03_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Hiramatsu N, Ichikawa N, Fukada H, Fujita T, Sullivan CV, Hara A. Identification and characterization of proteases involved in specific proteolysis of vitellogenin and yolk proteins in salmonids. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:11-25. [PMID: 11754018 DOI: 10.1002/jez.1138] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A pepstatin A-sensitive enzyme involved in yolk formation was purified from the masu salmon (Oncorhynchus masou) ovary using in vitro generation of yolk proteins from purified vitellogenin to assay enzymatic activity. Purification of the enzyme involved precipitation of ovarian extracts by water and ammonium sulfate followed by five steps of column chromatography. After SDS-PAGE and Western blotting, the purified enzyme appeared as a single approximately 42 kDa band that was immunoreactive to anti-human cathepsin D. The course of proteolytic cleavage of the three major yolk proteins (lipovitellin, beta'-component, and phosvitin) in fertilized masu salmon and Sakhalin taimen (Hucho perryi) eggs and embryos was visualized by SDS-PAGE and Western blotting using specific antisera. Major yolk protein bands appeared in positions corresponding to 92 kDa, 68 kDa, and 22 kDa (lipovitellin-derived peptides), as well as 17 kDa (beta'-component). During embryo development, the 92 kDa and 22 kDa bands gradually decreased in intensity, becoming undetectable in alevins. The 68 kDa band and a minor 24 kDa band became more intense after the eyed stage. Two additional peptides, corresponding to 40 and 28 kDa, newly appeared in alevins. During embryonic growth, the beta'-component band (17 kDa) persisted and phosvitin appeared to be progressively dephosphorylated. In vitro analysis of lipovitellin proteolysis indicated that the enzyme involved is a Pefabloc SC-sensitive serine protease. These results demonstrate, for the first time, that a cathepsin D-like protease and serine proteases play key roles in yolk formation and degradation, respectively, in salmonid fishes.
Collapse
Affiliation(s)
- Naoshi Hiramatsu
- Division of Marine Bioscience, Graduate School of Fisheries Science, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Nielsen LB, Nielsen HH. Purification and characterization of cathepsin D from herring muscle (Clupea harengus). Comp Biochem Physiol B Biochem Mol Biol 2001; 128:351-63. [PMID: 11207447 DOI: 10.1016/s1096-4959(00)00332-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cathepsin D was purified and concentrated 469-fold from a homogenate of Clupea harengus muscle. The purified enzyme is a monomer with a molecular weight of 38000-39000. It is inhibited by pepstatin and has optimal activity at pH 2.5 with hemoglobin as the substrate. The isoelectric point is at pH 6.8. Glycosidase treatment and binding to Concanavalin A indicated that the enzyme contains one N-linked carbohydrate moiety of the high-mannose type per molecule. The first 21 amino acid residues of the N-terminal showed high similarity to cathepsin D from antarctic icefish liver (Chionodraco hamatus) and trout ovary (Oncorhynchus mykiss). Digestion of the beta-chain of oxidized insulin resulted in preferential cleavage at Leu(15)-Tyr(16), (47%), Tyr(16)-Leu(17) (34%) and Ala(14)-Leu(15) (18%). Incubation with myofibrils from herring muscle at pH 4.23 showed that the enzyme mainly degraded myosin, actin and tropomyosin.
Collapse
Affiliation(s)
- L B Nielsen
- Department of Molecular Characterization, Biotechnological Institute, Kogle Allé 2, DK-2970 Hørsholm, Denmark.
| | | |
Collapse
|