1
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
2
|
Staikou A, Sagonas K, Spanoudi O, Savvidou K, Nazli Z, Feidantsis K, Michaelidis B. Activities of antioxidant enzymes and Hsp levels in response to elevated temperature in land snail species with varied latitudinal distribution. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110908. [PMID: 37832630 DOI: 10.1016/j.cbpb.2023.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Land snails occupy a variety of habitats, with differing temperature and humidity regimes and exhibit a wide span of adaptations, to withstand abiotic condition changes. The present work's aim was to examine the correlation of habitat's thermal adversity in different Mediterranean type habitats with the land snail's antioxidant and heat shock responses. For this purpose, snails of different species from populations along a north-south axis from the islands and mainland of Greece were exposed to elevated temperature and antioxidant enzyme activities, and Hsp70 and Hsp90 levels were determined in their tissues. The ATP, ADP, and AMP levels and the adenylate energy charge (AEC) were also determined. The comparison of protein levels and enzymatic activities across time intervals revealed significant differences for all factors examined. While the gradation pattern over time for a given factor was similar in all populations the absolute values over time differed. Catalase activity and the Hsp90 protein levels had the higher contribution in separating the different species and populations, followed by the activity of glutathione reductase and Hsp70 protein levels which contributed to a lesser degree. In general, populations from the southern part of their distribution in Greece tend to display a faster increase than northern populations in induction levels of all factors examined. Our data seem to be in line with the concept of preparation for oxidative stress (POS) while the changes in the AEC indicate an early preparation to cover the energy demand for the induction and synthesis of antioxidant enzymes and Hsps.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Konstantinos Sagonas
- Laboratory of Zoology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Olga Spanoudi
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Katerina Savvidou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Zoumboul Nazli
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | | | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece.
| |
Collapse
|
3
|
Staikou A, Feidantsis K, Gkanatsiou O, Bibos MN, Hatziioannou M, Storey KB, Michaelidis B. Seasonal cellular stress phenomena and phenotypic plasticity in land snail Helix lucorum populations from different altitudes. J Exp Biol 2021; 224:273728. [PMID: 34796901 DOI: 10.1242/jeb.243298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Temperature, a major abiotic environmental factor, regulates various physiological functions in land snails and therefore determines their biogeographical distribution. Thus, species with different distributions may present different thermal tolerance limits. Additionally, the intense reactivation of snail metabolic rate upon arousal from hibernation or estivation may provoke stress. Land snails, Helix lucorum, display a wide altitudinal distribution resulting in populations being exposed to different seasonal temperature variations. The aim of the present study was to investigate the expression of heat shock proteins (Hsps), mitogen activated protein kinases (MAPKs) and proteins that are related to apoptosis (Bcl-2, ubiquitin), that have 'cytoprotective' roles and are also considered to be reliable indicators of stress because of their crucial role in maintaining cellular homeostasis. These proteins were assessed in H. lucorum individuals from two different populations, one at Axios (sea level, 0 m) and the other at Kokkinopilos (Olympus, 1250 m), as well as after mutual population exchanges, in order to find out whether the different responses of these stress-related proteins depend solely on the environmental temperature. The results showed seasonally altered levels in all studied proteins in the hepatopancreas and foot of snails, both among different populations and between the same populations exposed to varying altitudes. However, individuals of the same population in their native habitat or acclimatized to a different habitat showed a relatively similar pattern of expression, supporting the induction of the specific proteins according to the life history of each species.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ourania Gkanatsiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Modestos Nakos Bibos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Marianthi Hatziioannou
- Department of Ichthyology and Aquatic Environment, Faculty of Agricultural Sciences, University of Thessaly, Fytoko street, GR-38445 Volos, Greece
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Staikou A, Tachtatzis G, Feidantsis K, Michaelidis B. Field studies on the annual activity and the metabolic responses of a land snail population living in high altitude. Comp Biochem Physiol A Mol Integr Physiol 2015; 191:1-8. [PMID: 26408810 DOI: 10.1016/j.cbpa.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
In the context of the metabolic cold adaptation hypothesis (MCA), we investigated a) the life and activity cycle characteristics and b) the metabolic responses of the endemic land snail species Cattania trizona olympica living at 1100m altitude in Olympus mountain (Greece). Field observations on the annual activity cycle of C. trizona olympica revealed that snails' activity was restricted mainly between the end of May and September, when the higher temperatures were recorded, while first matings were recorded in July and the last ones in mid September indicating a restricted favorable time period for reproduction. The activities of enzymes of intermediate metabolism showed a periodic seasonal pattern of change which seems to be closely related to the pattern of annual changes of air temperature and most of them exhibited higher activities during the coldest and warmest periods of the year. Moreover the data indicate a distinct differentiation of fuel oxidation during arousal and reproductive periods with lipid oxidation, apart from carbohydrates, contributing significantly to ATP turnover during reproductive activity. The higher enzymatic activities, determined in the tissues of C. trizona olympica than the corresponding ones determined in the tissues of the land snail species living at low altitudes, might indicate higher sensitivity of the intermediate metabolism and ATP turnover in C. trizona olympica to changes in environmental factors. Although the latter seems to be in line with the MCA hypothesis, it needs further investigation on metabolic rates to support it.
Collapse
Affiliation(s)
- Alexandra Staikou
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Tachtatzis
- Laboratory of Zoology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Michaelidis B, Hatzikamari M, Antoniou V, Anestis A, Lazou A. Stress activated protein kinases, JNKs and p38 MAPK, are differentially activated in ganglia and heart of land snail Helix lucorum (L.) during seasonal hibernation and arousal. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:149-53. [DOI: 10.1016/j.cbpa.2009.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
|
6
|
Michaelidis B, Kyriakopoulou-Sklavounou P, Staikou A, Papathanasiou I, Konstantinou K. Glycolytic adjustments in tissues of frog Rana ridibunda and land snail Helix lucorum during seasonal hibernation. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:582-9. [DOI: 10.1016/j.cbpa.2008.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/13/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022]
|
7
|
Abstract
Estivation is a state of aerobic hypometabolism used by organisms to endure seasonally arid conditions, often in desert environments. Estivating species are often active for only a few weeks each year to feed and breed and then retreat to estivate in sheltered sites, often underground. In general, estivation includes a strong reduction in metabolic rate, a primary reliance on lipid oxidation to fuel metabolism, and methods of water retention, both physical (e.g. cocoons) and metabolic (e.g. urea accumulation). The present review focuses on several aspects of metabolic adaptation during estivation including changes in the activities of enzymes of intermediary metabolism and antioxidant defenses, the effects of urea on estivator enzymes, enzyme regulation by reversible protein phosphorylation, protein kinases and phosphatases involved in signal transduction mechanisms, and the role of gene expression in estivation. The focus is on two species: the spadefoot toad, Scaphiopus couchii, from the Arizona desert; and the land snail, Otala lactea, a native of the Mediterranean region. The mechanisms of metabolic depression in estivators are similar to those seen in hibernation and anaerobiosis, and contribute to the development of a unified set of biochemical principles for the control of metabolic arrest in nature.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|