1
|
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics 2017; 18:810. [PMID: 29058582 PMCID: PMC5651623 DOI: 10.1186/s12864-017-4220-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Results Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Conclusions Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4220-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Mummenhoff K, Hurka H. Allopolyploid Origin ofArabidopsis suecica(Fries) Norrlin: Evidence from Chloroplast and Nuclear Genome Markers. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1995.tb00520.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Jakobsson M, Säll T, Lind-Halldén C, Halldén C. The evolutionary history of the common chloroplast genome of Arabidopsis thaliana and A. suecica. J Evol Biol 2007; 20:104-21. [PMID: 17210004 DOI: 10.1111/j.1420-9101.2006.01217.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolutionary history of the common chloroplast (cp) genome of the allotetraploid Arabidopsis suecica and its maternal parent A. thaliana was investigated by sequencing 50 fragments of cpDNA, resulting in 98 polymorphic sites. The variation in the A. suecica sample was small, in contrast to that of the A. thaliana sample. The time to the most recent common ancestor (T(MRCA)) of the A. suecica cp genome alone was estimated to be about one 37th of the T(MRCA) of both the A. thaliana and A. suecica cp genomes. This corresponds to A. suecica having a MRCA between 10 000 and 50 000 years ago, suggesting that the entire species originated during, or before, this period of time, although the estimates are sensitive to assumptions made about population size and mutation rate. The data was also consistent with the hypothesis of A. suecica being of single origin. Isolation-by-distance and population structure in A. thaliana depended upon the geographical scale analysed; isolation-by-distance was found to be weak on the global scale but locally pronounced. Within the genealogical cp tree of A. thaliana, there were indications that the root of the A. suecica species is located among accessions of A. thaliana that come primarily from central Europe. Selective neutrality of the cp genome could not be rejected, despite the fact that it contains several completely linked protein-coding genes.
Collapse
Affiliation(s)
- M Jakobsson
- Department of Cell and Organism Biology, Genetics, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
4
|
Abstract
The breeding system of Arabidopsis suecica was investigated through genetic analysis of microsatellite segregation patterns in five controlled crosses as well as in 16 single-mother families collected in the wild. Analysis of single and two-locus segregations in the F2 generation following a cross clearly shows that A. suecica is reproduces sexually. The single-mother families show a high level of homozygosity corroborating earlier results indicating a high level of inbreeding. The high level of individual homozygosity is due both to a high level of selfing and to the underlying population structure.
Collapse
Affiliation(s)
- Torbjörn Säll
- Department of Cell and Organism Biology, Genetics, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
5
|
Kuo HF, Olsen KM, Richards EJ. Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end. Genetics 2006; 173:401-17. [PMID: 16547105 PMCID: PMC1461430 DOI: 10.1534/genetics.105.055202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 03/07/2006] [Indexed: 11/18/2022] Open
Abstract
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
6
|
Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M. A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. Mol Biol Evol 2006; 23:1217-31. [PMID: 16549398 DOI: 10.1093/molbev/msk006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A coalescent-based method was used to investigate the origins of the allotetraploid Arabidopsis suecica, using 52 nuclear microsatellite loci typed in eight individuals of A. suecica and 14 individuals of its maternal parent Arabidopsis thaliana, and four short fragments of genomic DNA sequenced in a sample of four individuals of A. suecica and in both its parental species A. thaliana and Arabidopsis arenosa. All loci were variable in A. thaliana but only 24 of the 52 microsatellite loci and none of the four sequence fragments were variable in A. suecica. We explore a number of possible evolutionary scenarios for A. suecica and conclude that it is likely that A. suecica has a recent, unique origin between 12,000 and 300,000 years ago. The time estimates depend strongly on what is assumed about population growth and rates of mutation. When combined with what is known about the history of glaciations, our results suggest that A. suecica originated south of its present distribution in Sweden and Finland and then migrated north, perhaps in the wake of the retreating ice.
Collapse
Affiliation(s)
- Mattias Jakobsson
- Bioinformatics Program, Department of Human Genetics, University of Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ali HBM, Lysak MA, Schubert I. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 2004; 47:954-60. [PMID: 15499409 DOI: 10.1139/g04-041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic in situ hybridization (GISH) is a useful tool to analyse natural polyploids, hybrid plants, and their backcross progenies as to their origin, genomic composition, and intergenomic rearrangements. However, in angiosperms with very small genomes (<0.6 pg/1 C), often only heterochromatic regions were found to be labeled. We have modified the GISH technique to label entire mitotic and meiotic chromosomes of Arabidopsis thaliana (2n = 10) and closely related species with very small genomes by using high concentrations of DNA (7.5–15 µg per probe per slide) or 5 µg of probe and long hybridization times (>60 h). According to our GISH data, Cardaminopsis carpatica (2n = 16) is most likely the diploid ancestor of the autotetraploid Arabidopsis arenosa (2n = 32). Furthermore, within the allotetraploid species Arabidopsis suecica (2n = 26), it was possible to elucidate the origin of chromosomes contributed by the parental species A. thaliana and A. arenosa for a specimen with 2n = 26 or a deviating chromosome number.Key words: genomic in situ hybridization (GISH), Arabidopsis, Brassicaceae, allopolyploids, synthetic hybrids.
Collapse
Affiliation(s)
- Hoda B M Ali
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
8
|
Jeffrey Chen Z, Wang J, Tian L, Lee HS, Wang JJ, Chen M, Lee JJ, Josefsson C, Madlung A, Watson B, Lippman Z, Vaughn M, Chris Pires J, Colot V, Doerge RW, Martienssen RA, Comai L, Osborn TC. The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biol J Linn Soc Lond 2004; 82:689-700. [PMID: 18079994 DOI: 10.1111/j.1095-8312.2004.00351.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arabidopsis is a model system not only for studying numerous aspects of plant biology, but also for understanding mechanisms of the rapid evolutionary process associated with genome duplication and polyploidization. Although in animals interspecific hybrids are often sterile and aneuploids are related to disease syndromes, both Arabidopsis autopolyploids and allopolyploids occur in nature and can be readily formed in the laboratory, providing an attractive system for comparing changes in gene expression and genome structure among relatively 'young' and 'established' or 'ancient' polyploids. Powerful reverse and forward genetics in Arabidopsis offer an exceptional means by which regulatory mechanisms of gene and genome duplication may be revealed. Moreover, the Arabidopsis genome is completely sequenced; both coding and non-coding sequences are available. We have developed spotted oligo-gene and chromosome microarrays using the complete Arabidopsis genome sequence. The oligo-gene microarray consists of ~26 000 70-mer oligonucleotides that are designed from all annotated genes in Arabidopsis, and the chromosome microarray contains 1 kb genomic tiling fragments amplified from a chromosomal region or the complete sequence of chromosome 4. We have demonstrated the utility of microarrays for genome-wide analysis of changes in gene expression, genome organization and chromatin structure in Arabidopsis polyploids and related species.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Intercollegiate Program in Genetics and Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Säll T, Jakobsson M, Lind-Halldén C, Halldén C. Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 2003; 16:1019-29. [PMID: 14635917 DOI: 10.1046/j.1420-9101.2003.00554.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA sequencing was performed on up to 12 chloroplast DNA regions [giving a total of 4288 base pairs (bp) in length] from the allopolyploid Arabidopsis suecica (48 accessions) and its two parental species, A. thaliana (25 accessions) and A. arenosa (seven accessions). Arabidopsis suecica was identical to A. thaliana at all 93 sites where A. thaliana and A. arenosa differed, thus showing that A. thaliana is the maternal parent of A. suecica. Under the assumption that A. thaliana and A. arenosa separated 5 million years ago, we estimated a substitution rate of 2.9 x 10(-9) per site per year in noncoding single copy sequence. Within A. thaliana we found 12 substitution (single bp) and eight insertion/deletion (indel) polymorphisms, separating the 25 accessions into 15 haplotypes. Eight of the A. thaliana accessions from central Sweden formed one cluster, which was separated from a cluster consisting of central European and extreme southern Swedish accessions. This latter cluster also included the A. suecica accessions, which were all identical except for one 5 bp indel. We interpret this low level of variation as a strong indication that A. suecica effectively has a single origin, which we dated at 20 000 years ago or more.
Collapse
Affiliation(s)
- T Säll
- Department of Cell and Organism Biology, Genetics, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
10
|
Lind-Halldén C, Halldén C, Säll T. Genetic variation in Arabidopsis suecica and its parental species A. arenosa and A. thaliana. Hereditas 2002; 136:45-50. [PMID: 12184488 DOI: 10.1034/j.1601-5223.2002.1360107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Random amplified polymorphic DNA (RAPD) markers were used to estimate the level of genetic variation in Swedish accessions of the allopolyploid Arabidopsis suecica and its parental species A. thaliana and A. arenosa. The results showed clear differences among the three species with respect to the level of variation. A. arenosa was highly variable, A. thaliana showed a moderate level of variation whereas A. suecica was much less variable than the two other species. An extended analysis covering 19 Swedish populations of A. suecica corroborated the low level of variation in this species, yet 16 unique phenotypes were observed. No isolation by distance was observed. When the genetic variation was partitioned among and within populations of A. suecica, the results showed that the majority of the variation (81%) occurred among populations. This result is interpreted as a strong indication that A. suecica is autogamous in nature.
Collapse
Affiliation(s)
- C Lind-Halldén
- Department of Mathematics and Natural Sciences, Kristianstad University, Sweden
| | | | | |
Collapse
|
11
|
Al-Shehbaz IA, O'Kane SL. Taxonomy and phylogeny of Arabidopsis (brassicaceae). THE ARABIDOPSIS BOOK 2002; 1:e0001. [PMID: 22303187 PMCID: PMC3243115 DOI: 10.1199/tab.0001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given.
Collapse
Affiliation(s)
- Ihsan A. Al-Shehbaz
- Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. (
)
| | - Steve L. O'Kane
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa 50614-0421, U.S.A. (
)
| |
Collapse
|