1
|
Björklund A, Barker RA. The basal forebrain cholinergic system as target for cell replacement therapy in Parkinson's disease. Brain 2024; 147:1937-1952. [PMID: 38279949 PMCID: PMC11146424 DOI: 10.1093/brain/awae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.
Collapse
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
2
|
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
- Department of Physics, Oakland University, Rochester, MI 48309
| |
Collapse
|
3
|
Shin E, Palmer MJ, Li M, Fricker RA. GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington's disease. Stem Cell Rev Rep 2012; 8:513-31. [PMID: 21720791 DOI: 10.1007/s12015-011-9290-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease where GABAergic medium spiny neurons (MSNs) in the striatum degenerate. Embryonic stem cell-derived neural transplantation may provide an appropriate therapy for HD. Here we aimed to develop a suitable protocol to obtain a high percentage of functional GABAergic neurons from mouse embryonic stem cells (mESCs), and then tested their differentiation potential in vivo. The monolayer method was compared with the embryoid body and five stage method for its efficiency in generating GABAergic neurons from mESCs. All three methods yielded a similar percentage of GABAergic neurons from mESCs. Monolayer method-derived GABAergic neurons expressed the MSN marker dopamine- and cyclic AMP-regulated phosphoprotein (DARPP32). The pluripotent stem cell population could be eliminated in vitro by treating cells with puromycin and retinoic acid. Using patch-clamp recordings, the functional properties of GABAergic neurons derived from mESCs were compared to GABAergic neurons derived from primary lateral ganglionic eminence. Both types of neurons showed active membrane properties (voltage-gated Na(+) and K(+) currents, Na(+)-dependent action potentials, and spontaneous postsynaptic currents) and possessed functional glutamatergic receptors and transporters. mESC-derived neural progenitors were transplanted into a mouse model of HD. Grafted cells differentiated to mature neurons expressing glutamate decarboxylase, dopamine type 1 receptors, and DARPP32. Also, neural precursors and dividing populations were found in the grafts. In summary, mESCs are able to differentiate efficiently into functional GABAergic neurons using defined in vitro conditions, and these survive and differentiate following grafting to a mouse model of HD.
Collapse
Affiliation(s)
- Eunju Shin
- Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| | | | | | | |
Collapse
|
4
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
5
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
6
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
7
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
8
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
9
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
10
|
Gage FH, Björklund A. Trophic and growth-regulating mechanisms in the central nervous system monitored by intracerebral neural transplants. CIBA FOUNDATION SYMPOSIUM 2007; 126:143-59. [PMID: 3556083 DOI: 10.1002/9780470513422.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro studies have demonstrated the presence of nerve growth factor (NGF) and other neurotrophic factors in the mammalian central nervous system (CNS). This paper reviews a series of experiments in which the intracerebral neural grafting technique was used to monitor the in vivo expression of such neurotrophic factors and the changes induced by denervating lesions, with the hippocampal formation as a model. Neonatal or adult sympathetic ganglionic neurons, and fetal septal cholinergic neurons, were grafted into or adjacent to the hippocampal formation in adult rats, and the effect of removal of the major afferent inputs (i.e. the septal, commissural or entorhinal inputs) on neuronal survival and fibre outgrowth was assessed histochemically or biochemically. Damage to the septohippocampal (partly cholinergic) pathway had a dramatic effect on survival and fibre outgrowth from neonatal and adult sympathetic ganglionic neurons, and increased the survival of both cholinergic and noncholinergic neurons in the fetal septal grafts. These effects were specific for lesions of the septohippocampal system (fimbria-fornix transection or medial septal lesions), and were not seen after transection of the entorhinal perforant path or the commissural system. It is proposed that neurotrophic factors in the hippocampal formation are under some type of regulation from the afferent inputs, and that removal of the septal afferents, in particular, will increase the availability of NGF or an NGF-like factor from the denervated target. This mechanism may play a normal role in the induction and regulation or regeneration and compensatory collateral sprouting from the remaining afferents in partially denervated brain regions.
Collapse
|
11
|
Williams BJ, Eriksdotter-Jonhagen M, Granholm AC. Nerve growth factor in treatment and pathogenesis of Alzheimer's disease. Prog Neurobiol 2006; 80:114-28. [PMID: 17084014 DOI: 10.1016/j.pneurobio.2006.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The etiology of Alzheimer's disease (AD) is still unknown. In addition, this terrible neurodegenerative disease will increase exponentially over the next two decades due to longer lifespan and an aging "baby-boomer" generation. All treatments currently approved for AD have moderate efficacy in slowing the rate of cognitive decline in patients, and no efficacy in halting progression of the disease. Hence, there is an urgent need for new drug targets and delivery methods to slow or reverse the progression of AD. One molecule that has received much attention in its potential therapeutic role in AD is nerve growth factor (NGF). This review will demonstrate data from humans and animals which promote NGF as a potential therapeutic target by (1) outlining the hypothesis behind using NGF for the treatment of AD, (2) reviewing both the normal and AD altered signaling pathways and effects of NGF in the central nervous system (CNS), and (3) examining the results of NGF treatment obtained from animal models of AD and AD patients.
Collapse
Affiliation(s)
- Brice J Williams
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, 173 Ashley Ave BSB 403, Charleston, SC 29425, United States
| | | | | |
Collapse
|
12
|
Triarhou LC. Neurochemical indices of functional restoration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 517:89-105. [PMID: 12580308 DOI: 10.1007/978-1-4615-0699-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Lazaros C Triarhou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Medical Science Building A142, Indiana University Medical Center, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| |
Collapse
|
13
|
Doucet G, Brundin P, Descarries L, Björklund A. Effect of Prior Dopamine Denervation on Survival and Fiber Outgrowth from Intrastriatal Fetal Mesencephalic Grafts. Eur J Neurosci 2002; 2:279-290. [PMID: 12106034 DOI: 10.1111/j.1460-9568.1990.tb00419.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
[3H]Dopamine (DA) uptake radioautography and tyrosine hydroxylase (TH) immunocytochemistry were used to assess quantitatively the effects of the presence or absence of host mesostriatal DA afferents on the survival and fiber outgrowth from fetal ventral mesencephalic DA neurons grafted into the neostriatum of adult recipient rats. Rats received bilateral intrastriatal transplants of fetal ventral mesencephalic tissue 1 month after a unilateral injection of 6-hydroxydopamine (6-OHDA) into the right nigrostriatal bundle (denervated side). Five to six months later, some of the grafted rats received a second 6-OHDA injection in the left nigrostriatal bundle (acutely denervated or 'intact' side). After a further 7 days, slices of each hemisphere from the latter rats were incubated with [3H]DA and processed for film and high resolution radioautography. The density of the film radioautographs was measured with a computerized image analysis system and calibrated by silver grain cluster (i.e. DA terminal) counting over selected areas of the same sections in light microscope radioautographs. The brains of the remaining grafted rats were processed for TH immunoreactivity 6 - 12 months after graft surgery. Neither the size of the grafts, nor the number of surviving TH-positive graft neurons showed any significant difference between the nondenervated and the denervated sides. However, the size of the TH-positive cell bodies was significantly greater in the grafts on the denervated side. In the [3H]DA uptake radioautographs, considerable outgrowth of DA fibers was evident in the neostriatum on the 'intact' side in spite of the presence of an intact host DA innervation until 7 days before sacrifice. The overall DA fiber outgrowth was nevertheless almost two-fold greater on the denervated side, and extended deeper into the host neostriatum than on the 'intact' side; only 7% of the total neostriatal area, on average, was at background level compared to 30% on the 'intact' side, and the overall density of neostriatal DA innervation amounted to 36% of normal as compared to 20% on the 'intact' side. The correlation between the overall density of graft-derived DA innervation and the size of the grafts was linear on the 'intact' side, but reached a plateau with relatively small grafts on the denervated side. However, the ventral striatum on both sides was very poorly innervated by these grafts. These findings demonstrate that the mature neostriatal tissue can support axonal growth and innervation from grafted fetal DA neurons even in the presence of a normal complement of endogenous DA fibers. Prior removal of the host striatal DA innervation does not influence the overall size of the grafts nor the number of surviving DA neurons, but induces an increase in the cell body size and fiber outgrowth of the grafted DA neurons.
Collapse
Affiliation(s)
- G. Doucet
- Department of Medical Cell Research, Section of Neurobiology, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
14
|
Rossi F, Borsello T, Strata P. Embryonic Purkinje Cells Grafted on the Surface of the Cerebellar Cortex Integrate in the Adult Unlesioned Cerebellum. Eur J Neurosci 2002; 4:589-593. [PMID: 12106344 DOI: 10.1111/j.1460-9568.1992.tb00908.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of an injury or the selective degeneration of specific neuronal populations is commonly assumed to be a necessary prerequisite for the survival and the integration of grafted neurons in the recipient brain. In the present study we have placed solid grafts of cerebellar anlage in the fourth ventricle of adult rats, in close contact with the host cerebellar cortex, to assess the capacity of embryonic Purkinje cells to interact with adult neurons and integrate in the unlesioned cerebellar cortex. Numerous grafted Purkinje cells are indeed able to leave the implant and migrate into the host molecular layer, where they develop adult structural features. In addition, such cells are able to elicit the growth of host climbing fibre sprouts which end in newly formed arborizations impinging upon their dendritic trees. Climbing fibre collateral branches also penetrate the implant to innervate Purkinje cells which have not migrated in the host cerebellum. These results show that embryonic Purkinje cells are able to survive and integrate in an adult unlesioned cerebellar cortex. In addition, adult olivary axons respond to the increased size of the target population by expanding their terminal domain to innervate grafted Purkinje cells.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Department of Human Anatomy and Physiology, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | | | | |
Collapse
|
15
|
Abstract
Neural transplantation provides a powerful novel technique for investigating the neurobiological basis and potential strategies for repair of a variety of neurodegenerative conditions. The present review considers applications of this technique to dementia. After a general introduction (section 1), attempts to replace damaged neural systems by transplantation are considered in the context of distinct animal models of dementia. These include grafting into aged animals (section 2), into animals with neurotransmitter-selective lesions of subcortical nuclei, in particular involving basal forebrain cholinergic systems (section 3), and into animals with non-specific lesions of neocortical and hippocampal systems (section 4). The next section considers the alternative use of grafts as a source of growth/trophic factors to inhibit degeneration and promote regeneration in the aged brain (section 5). Finally, a number of recent studies have employed transplanted tissues to model and study the neurodegenerative processes associated with ageing and Alzheimer's disease taking place within the transplant itself (section 6). It is concluded (section 7) that although neural transplantation does not offer any immediate prospect of therapeutic repair in clinical dementia, the technique does offer a powerful neurobiological tool for studying the neuropathological processes involved in both spontaneous degeneration and specific diseases of ageing. New understandings derived from neural transplantation may be expected to lead to rational development of novel strategies to inhibit the neurodegenerative process and to promote regeneration in the aged brain.
Collapse
Affiliation(s)
- S. B. Dunnett
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
16
|
Beckmann N, Hof RP, Rudin M. The role of magnetic resonance imaging and spectroscopy in transplantation: from animal models to man. NMR IN BIOMEDICINE 2000; 13:329-348. [PMID: 11002313 DOI: 10.1002/1099-1492(200010)13:6<329::aid-nbm653>3.0.co;2-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Critical success factors in solid organ and vascular transplantation are the assessment of graft status/viability as well as stringent monitoring of transplant recipients, preferentially using noninvasive techniques. This review addresses the application of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the field of transplantation. The first section is devoted to the description of the main MR techniques used for monitoring the status of the graft noninvasively. Subsequently, the role of MRI/MRS in the analysis of the viability of organs for transplantation is discussed. Since chronic rejection remains a major difficulty, development of new therapies is still ongoing. Thus, the third part is devoted to the use of MRI/MRS for monitoring graft rejection in animal models of transplantation. This is followed by a discussion of clinical studies of transplantation involving MRI/MRS. Finally, a general appraisal is made on available imaging techniques for the non-invasive characterization of grafts in situ, highlighting the role of MR methods in the field of transplantation.
Collapse
Affiliation(s)
- N Beckmann
- Core Technologies Area, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
17
|
Doering LC, Snyder EY. Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J Neurosci Res 2000; 61:597-604. [PMID: 10972956 DOI: 10.1002/1097-4547(20000915)61:6<597::aid-jnr3>3.0.co;2-l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential of a neural stem cell line to acquire cholinergic characteristics was studied in transplants injected into the septum/diagonal band nuclei of young adult rats and mice. The stem cells integrated within the nuclei and survived for up to 9 months. Three methods were used to identify the grafted cells and to show differentiation into astrocytes and neurons. Enhanced survival of the stem cells occurred in the host brain with a previous lesion of the fimbria-fornix pathway. Differentiated cells acquired neuronal-like features including the expression of neurofilament subunits. In lesioned hosts, subpopulations of the grafted cells acquired a cholinergic neuronal phenotype and expressed choline acetyltransferase and the p75 neurotrophin receptor. Cells that developed into astrocytes were often associated with blood vessels and expressed glial fibrillary acidic protein. The results further exemplify the potential of stem cell lines and the property of site-specific differentiation when this line is transplanted to the cholinergic system of the adult brain.
Collapse
Affiliation(s)
- L C Doering
- Department of Pathology and Molecular Medicine, Health Science Center, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
18
|
Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 1999; 833:161-72. [PMID: 10375691 DOI: 10.1016/s0006-8993(99)01501-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have analyzed the effect of severe traumatic brain injury (TBI) on the levels of mRNA expression of neurotrophic factors (NTFs): brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and their respective receptors: trkB, trkA and CNTFRalpha. The expression was examined in the region of the lesion as well as a region remote from the lesion at 12, 24, and 36 h following the injury. Our data suggest that after the brain injury, the expression of NGF and BDNF mRNAs were early, transiently and significantly upregulated while that of CNTF was a slow and less amplified response in both areas of the brain. We also found that trkA mRNA expression was only upregulated significantly in the remote area; trkB mRNA showed no significant change in either area except an upregulation at 12 h in the remote area. CNTFRalpha was downregulated significantly by 24-36 h in the lesion area and by 24 h in the remote area. These changes suggest that TBI regulates the expression of NTFs and their receptors. These alterations in expression may be involved in modulating the neuronal response after brain injury.
Collapse
Affiliation(s)
- N M Oyesiku
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Duan WM, Widner H, Cameron RM, Brundin P. Quinolinic acid-induced inflammation in the striatum does not impair the survival of neural allografts in the rat. Eur J Neurosci 1998; 10:2595-606. [PMID: 9767390 DOI: 10.1046/j.1460-9568.1998.00279.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been suggested that inflammation related to intracerebral transplantation surgery can affect the survival of intrastriatal neural allografts. To test this hypothesis, we transplanted dissociated embryonic mesencephalic tissue from one of two rat strains, Lewis (allogeneic grafts) or Sprague-Dawley (syngeneic grafts), to the striatum of Sprague-Dawley rats. The target striatum was either intact or had received a local injection of quinolinic acid 9 days earlier, in order to induce a marked inflammation. At 6 or 12 weeks after transplantation, there was no significant difference between the different groups regarding the number of surviving grafted tyrosine hydroxylase immunoreactive neurons. However, the graft volume of both the syngeneic and allogeneic implants was significantly larger in the quinolinate-lesioned than in the intact striatum. There were dramatically increased levels of expression of major histocompatibility complex class I and II antigens, marked infiltrates of macrophages, activated microglia and astrocytes, and accumulation of large numbers of CD4 and CD8 positive T-lymphocytes in the quinolinate-lesioned striatum. In contrast, these immunological markers were much less abundant around both syngeneic and allogeneic grafts placed in intact striatum. We conclude that severe inflammation caused by quinolinic acid does not lead to rejection of intrastriatal neural allografts.
Collapse
Affiliation(s)
- W M Duan
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, S olvegatan 17, S-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
20
|
Abstract
The implantation of genetically engineered nonneuronal cells can provide an effective method for achieving localized delivery of discrete molecules to the CNS or for providing substrates for regrowth of neural structures. Most primary nonneuronal cells have the advantage of being easily obtainable from the prospective host for ex vivo retrovirus-mediated genetic manipulation (most will be mitotic in culture) and reimplantation as an autologous graft (circumventing the problem of immune rejection). As primary cells, they are unlikely to be tumorigenic. The most vexing problem for such systems remains the apparent loss of transgene expression from viral promoters after prolonged periods of engraftment. Much effort is currently being directed at optimizing sustained transgene expression by varying the promoters, by varying the cell types to be engineered, or by regulating expression by enhancing promoter function or substrate availability. While nonneuronal cells are excellent vehicles for achieving passive delivery of substances to the CNS, they lack the ability to incorporate into the host cytoarchitecture in a functional manner (e.g., make synaptic contacts). For this reason, not only may certain essential circuits not be re-formed, but the regulated release of certain substances through feedback loops may be missing. While apparently unimportant for some substances (e.g., ACh), for others (e.g., NGF), their unregulated, inappropriate, excessive, or ectopic release may actually be inimical to the host. Furthermore, the loss of foreign gene expression (the bane of gene therapy) may leave engineered nonneural cells incapacitated, whereas donor tissue originating from brain may intrinsically produce various CNS factors allowing correction to proceed despite inactivation of the introduced gene. In fact, CNS-derived tissue may provide as-yet-unrecognized endogenous neuralspecific substances which are equally as beneficial to the host as the gene in question. Thus, future developments in gene delivery to the brain for some conditions may emphasize using neurons or neural progenitors for ex vivo genetic manipulation (Fisher, 1997) and refining techniques for the direct injection of therapeutic genes into neurons in vivo (see Snyder and Fisher, 1996). For a wide variety of conditions, however, using nonneuronal cellular vehicles or even nonbiologic synthetic vehicles may be efficient, effective, and safe strategies for the passive delivery of therapeutic molecules to discrete regions of the CNS. In fact, this approach may come closer than any other to immediate human applications.
Collapse
Affiliation(s)
- E Y Snyder
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Abdulla FA, Calaminici M, Gray JA, Sinden JD, Stephenson JD. Changes in the sensitivity of frontal cortical neurones to acetylcholine after unilateral lesion of the nucleus basalis with alpha-amino-3-OH-4-isoxozole propionic acid (AMPA): effects of basal forebrain transplants into neocortex. Brain Res Bull 1997; 42:169-86. [PMID: 8995327 DOI: 10.1016/s0361-9230(96)00213-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unilateral S-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) lesions of the nucleus basalis magnocellularis (nbm), which produced persistent and extensive ChAT-positive cell loss within the nbm and depletion of cortical cholinergic markers in the frontal cortex, increased both the number and sensitivity of individual frontal cortical neurones responding to iontophoretic administration of ACh. The lesion also increased the sensitivity of individual neurones to carbachol but the increase in the number of neurones responding to carbachol was transient and had returned to normal 4 weeks after lesion. The sensitivity of individual neurones to glutamate was unchanged by the lesion. The percentage of cortical neurones responding to ACh, but not the sensitivity of individual neurones was restored to the prelesion level, 6-8 weeks after cholinergic transplants to the lesioned frontal cortex; cholinergic transplants to the more distant parietal cortex were only effective after 6 months whereas noncholinergic transplants were ineffective at both time intervals. Cholinergic transplants placed in the frontal cortex 6-8 weeks or 6 months before nbm lesion offered some protection from the effects of the lesion, particularly at 6 months but were ineffective when placed into the parietal cortex. Lesion of the nbm also reduced basal firing rate of spontaneously active neurones and this was not restored by any of the transplants. The results are discussed in the light of quantitative measurements of acetylcholinesterase-positive fibre outgrowth from the transplant into the recording area, which are described in the preceding manuscript [20].
Collapse
Affiliation(s)
- F A Abdulla
- Department of Psychology, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
22
|
Krewson CE, Saltzman WM. Nerve Growth Factor Delivery and Cell Aggregation Enhance Choline Acetyltransferase Activity after Neural Transplantation. ACTA ACUST UNITED AC 1996; 2:183-96. [DOI: 10.1089/ten.1996.2.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christine E. Krewson
- Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Present address: Merck Research Laboratories, Merck & Co, Inc., West Point, Pennsylvania 19846
| | - W. Mark Saltzman
- Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
23
|
Horner PJ, Reier PJ, Stokes BT. Quantitative analysis of vascularization and cytochrome oxidase following fetal transplantation in the contused rat spinal cord. J Comp Neurol 1996; 364:690-703. [PMID: 8821455 DOI: 10.1002/(sici)1096-9861(19960122)364:4<690::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the normal adult central nervous system, a coupling between energy consumption and vascular density is well established. Likewise, the survival of fetal neural tissue grafts is highly dependent on the establishment of functional vascular integration with the host. However, to what degree graft vascularization and tissue metabolism influence the normal host response to traumatic injury has not been extensively studied. In the present report, embryonic day 14 fetal spinal cord suspension grafts were made into the lesion epicenter of subchronic (10 days) contusion-injured rats. Three months later, intraspinal transplants were analyzed using correlative cytochrome oxidase histochemistry and vascular morphometric analysis. The same approaches were applied to the host spinal cord and injured, non-transplanted animals in order to determine the ability of a graft to alter the level of post-injury vascularization and/or metabolism. In general, graft vascular density was increased over that measured in normal or injured gray matter. Vascular density in gray matter near the host/graft interface was markedly increased when compared to either gray matter of the same spinal level in injured non-grafted animals or normal control spinal gray matter. Vascular changes were not noted in gray matter 3 mm distal to the lesion epicenter (rostral or caudal) in all groups analyzed. Cytochrome oxidase was up-regulated at this time in the graft and gray matter at the host/graft interfaces when compared to either gray matter of the same spinal level in injured, non-grafted animals or that of uninjured controls. These data indicate that an intraspinal transplant placed into the contused adult rat spinal cord reaches a metabolic capacity that is likely to be associated with high levels of oxidative metabolism in the well-vascularized graft neuropil. In addition, transplantation chronically alters vascularization and metabolic patterns of adjacent spinal gray matter following contusion injury.
Collapse
Affiliation(s)
- P J Horner
- Department of Physiology, Ohio State University College of Medicine, Columbus 43210, USA
| | | | | |
Collapse
|
24
|
Tarricone BJ, Simon JR, Li YJ, Low WC. Neural grafting of cholinergic neurons in the hippocampal formation. Behav Brain Res 1996; 74:25-44. [PMID: 8851913 DOI: 10.1016/0166-4328(95)00144-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinergic septohippocampal system plays an important role in spatial learning and memory functions. Transections of the septohippocampal pathway have been shown to result in a near complete loss of cholinergic innervation in the hippocampus and induce severe spatial memory impairments. In this article, we have reviewed the studies which demonstrate the ability of intrahippocampal septal grafts to reinnervate the hippocampal formation and ameliorate spatial learning and memory deficits. Neuroanatomical studies suggest that grafts of cholinergic tissue can innervate the host hippocampal formation in a pattern that mimics that of the normal septohippocampal pathway. This innervation, in turn, is associated with the formation of graft-to-host synaptic connections. Neurochemical studies reveal that intrahippocampal grafts of septal cells can restore choline acetyltransferase activity, acetylcholine synthesis, and high affinity choline uptake in presynaptic terminals of grafted neurons. In addition, these grafts can normalize the upregulation of cholinergic muscarinic receptors seen postsynaptically in the hippocampus following lesions of the septohippocampal pathway. The functional nature of these grafts is also substantiated by electrophysiological recordings which demonstrate stimulus-evoked graft-to-host synaptic transmission as well as the reinstatement of EEG activity typical of septohippocampal connectivity. In addition to graft-to-host connections, behavioral and neurochemical studies also provide evidence for host-to-graft connections that can regulate the activity of grafted cholinergic neurons during the performance of specific behavioral tasks requiring spatial memory function. Together, these studies suggest that grafts of cholinergic neurons from the medial septal nucleus can become anatomically and functionally incorporated into the circuitry of the host hippocampal formation.
Collapse
Affiliation(s)
- B J Tarricone
- Institute of Psychiatric Research, Medical Neurobiology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
25
|
Roudet C, Giménez y Ribotta M, Privat A, Feuerstein C, Savasta M. Intraspinal noradrenergic-rich implants reverse the increase of alpha 1 adrenoceptors densities caused by complete spinal cord transection or selective chemical denervation: a quantitative autoradiographic study. Brain Res 1995; 677:1-12. [PMID: 7606453 DOI: 10.1016/0006-8993(95)00068-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study examined, in the adult rat, whether the intraspinal transplantation of a cell suspension of embryonic day (ED)13 rat locus coeruleus primordia was able to normalize the lesion-induced increase of spinal alpha 1-adrenoceptors. Two experimental models of spinal denervation were studied. The first model consisted of a complete spinal cord transection (thoracic vertebrae level T8-T9) and 1 week later, the cell suspension was transplanted below the section; the second one was obtained by a selective chemical lesion of the noradrenergic (NA) system and one month later, the cell suspension was implanted at the same level as in transected rats. Five weeks after grafting, all animals were sacrificed and spinal cord tissue sections were processed for immunohistochemical detection of noradrenaline or for quantification of alpha 1-adrenoceptors binding sites densities using [3H]prazosin as a ligand. After 6-OHDA lesion, as well as caudally to the transection, a significant increase by 21% (P < 0.01) to 68% (P < 0.001) of alpha 1-adrenoceptors densities was detected. The implantation of embryonic NA neurons into the denervated spinal cord led to a reversal of the lesion-induced increase of spinal alpha 1-adrenoceptors, five weeks later. Moreover, this reversal seems to be more effective after mechanical than after chemical denervation.
Collapse
Affiliation(s)
- C Roudet
- INSERM U.318, LAPSEN, Département des Neurosciences Cliniques et Biologiques, Grenoble, France
| | | | | | | | | |
Collapse
|
26
|
The spinal cord as an alternative model for nerve tissue graft. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe spinal cord provides an alternative model for nerve tissue grafting experiments. Anatomo-functional correlations are easier to make here than in any other region of the CNS because of a direct implication of spinal cord neurons in sensorimotor activities. Lesions can be easily performed to isolate spinal cord neurons from descending inputs. The anatomy of descending monoaminergic systems is well defined and these systems offer a favourable paradigm for lesion-graft experiments.
Collapse
|
27
|
Multiple obstacles to gene therapy in the brain. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003747x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNeuwelt et al. have proposed gene-transfer experiments utilizing an animal model that offers many important advantages for investigating the feasibility of gene therapy in the human brain. A variety of tissues concerning the viral vector and mode of delivery of the corrective genes need to be resolved, however, before such therapy is scientifically supportable.
Collapse
|
28
|
Principles of brain tissue engineering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is often presumed that effects of neural tissue transplants are due to release of neurotransmitter. In many cases, however, effects attributed to transplants may be related to phenomena such as trophic effects mediated by glial cells or even tissue reactions to injury. Any conclusion regarding causation of graft effects must be based on the control groups or other comparisons used. In human clinical studies, for example, comparing the same subject before and after transplantation allows for many interpretations of the causes of clinical changes.
Collapse
|
29
|
Lessons on transplant survival from a successful model system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractStudies on the snailMelampusreveal that connectivity is crucial to the survival of transplanted ganglia. Transplanted CNS ganglia can innervate targets or induce supernumerary structures. Neuron survival is optimized by the neural incorporation that occurs when a transplanted ganglion is substituted for an excised ganglion. Better provision for the trophic requirements of neurons will improve the success of mammalian fetal transplants.
Collapse
|
30
|
Repairing the brain: Trophic factor or transplant? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree experiments on neural grafting with adult rat hosts are described. Working memory impairments were produced by lesioning the hippocampus or severing its connections with the septum by ablating the fimbria-fornix. The results suggest that the survival and growth of a neural graft, whether an autograft or a xenograft, is not a necessary condition for functional recovery on a task tapping working memory.
Collapse
|
31
|
Will brain tissue grafts become an important therapy to restore visual function in cerebrally blind patients? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGrafting embryonic brain tissue into the brain of patients with visual field loss due to cerebral lesions may become a method to restore visual function. This method is not without risk, however, and will only be considered in cases of complete blindness after bilateral occipital lesions, when other, risk-free neuropsychological methods fail.
Collapse
|
32
|
Difficulties inherent in the restoration of dynamically reactive brain systems. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractThe responses displayed by an injured or diseased nervous system are complex. Some of the responses may effect a functional reorganization of the affected neural circuitry. Strategies aimed at the restoration of function, whether or not these involve transplantation, need to recognize the innate reactive capacity of the nervous system to damage. More successful strategies will probably incorporate, rather than ignore, the adaptive responses of the compromised neural systems.
Collapse
|
33
|
Elegant studies of transplant-derived repair of cognitive performance. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCholinergic-rich grafts have been shown to be effective in restoring maze-learning deficits in rats with lesions of the forebrain cholinergic projection system. However, the relevance of those studies to developing novel therapies for Alzheimer's disease is questioned.
Collapse
|
34
|
Neural transplants are grey matters. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe lesion and transplantation data cited by Sinden et al., when considered in tandem, seem to harbor an internal inconsistency, raising questions of false localization of function. The extrapolation of such data to cognitive impairment and potential treatment strategies in Alzheimer's disease is problematic. Patients with focal basal forebrain lesions (e.g., anterior communicating artery aneurysm rupture) might be a more appropriate target population.
Collapse
|
35
|
Immunobiology of neural transplants and functional incorporation of grafted dopamine neurons. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn contrast to the views put forth by Stein & Glasier, we support the use of inbred strains of rodents in studies of the immunobiology of neural transplants. Inbred strains demonstrate homology of the major histocompatibility complex (MHC). Virtually all experimental work in transplantation immunology is performed using inbred strains, yet very few published studies of immune rejection in intracerebral grafts have used inbred animals.
Collapse
|
36
|
Local and global gene therapy in the central nervous system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFor focal neurodegenerative diseases or brain tumors, localized delivery of protein or genetic vectors may be sufficient to alleviate symptoms, halt disease progression, or even cure the disease. One may circumvent the limitation imposed by the blood-brain barrier by transplantation of genetically altered cell grafts or focal inoculation of virus or protein. However, permanent gene replacement therapy for diseases affecting the entire brain will require global delivery of genetic vectors. The neurotoxicity of currently available viral vectors and the transient nature of transgene expression invivomust be overcome before their use in human gene therapy becomes clinically applicable.
Collapse
|
37
|
Neural grafting in human disease versus animal models: Cautionary notes. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractOver the past two decades, research on neural transplantation in animal models of neurodegeneration has provided provocative in sights into the therapeutic use of grafted tissue for various neurological diseases. Although great strides have been made and functional benefits gained in these animal models, much information is still needed with regard to transplantation in human patients. Several factors are unique to human disease, for example, age of the recipient, duration of disease, and drug interaction with grafted cells; these need to be explored before grafting can be considered a safe and effective therapeutic tool.
Collapse
|
38
|
Building a rational foundation for neural transplantation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe neural transplantation research described by Sinden and colleagues provides part of the rationale for the clinical application of neural transplantation. The authors are asked to clarify their view of the role of the cholinergic system in cognition, to address extrahippocampal damage caused by transient forebrain ischemia, and to consider the effects of delayed neural degeneration in their structure-function analysis.
Collapse
|
39
|
Intraretrosplenial grafts of cholinergic neurons and spatial memory function. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe transplantation of cholinergic neurons into the hippocampal formation has been well characterized. We describe our studies on the effects of cholinergic transplants in the retrosplenial cortex. These transplants were capable of ameliorating spatial navigation deficits in rats with septohippocampal lesions. In addition, we provide evidence for the modulation of transplanted neurons by the host brain.
Collapse
|
40
|
Gene therapy and neural grafting: Keeping the message switched on. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA major problem in developing an effective gene therapy for the nervous system lies in understanding the principles that maintain or turn off the expression of genes following their transfer into the CNS.
Collapse
|
41
|
Therapeutic neural transplantation: Boon or boondoggle? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractDespite reports of recovery of function after neural transplantation, the biological interactions between transplanted neurons and the host brain that are necessary to mediate recovery are unclear at present. One source of confusion is in the variety of models and protocols used in these studies. It is suggested that multisite experimentation using standard protocols, models, and recovery criteria would be helpful in moving neural transplantation from the laboratory to the clinic.
Collapse
|
42
|
The ethics of fetal tissue grafting should be considered along with the science. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn addition to the scientific and medical issues surrounding the use of fetal tissue transplants, the ethical implications should be considered. Two major ethical issues are relevant. The first of these is whether this experimental procedure can be justified on the basis of potential benefit to the patient. The second is whether the use of tissue obtained from intentionally aborted fetuses can be justified in the context of historical and existing guidelines for the protection of human subjects. The separation of ethical decisions from medical practice and scientific research is necessary to prevent the exploitation of innocent human life.
Collapse
|
43
|
Gene therapy for neurodegenerative disorders and malignant brain tumors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGene therapy approaches have great promise in the treatment of neurodegenerative disorders and malignant brain tumors. Neuwelt et al. review available viral-mediated gene therapy methods and their blood-brain-barrier (BBB) disruption delivery technique, briefly mentioning nonviral mediated gene therapy methods. This commentary discussed the BBB disruption delivery technique, viral and nonviral mediated gene therapy approaches to Parkinson's disease, and the potential use of antisense oligo to suppress malignant brain tumors.
Collapse
|
44
|
Behavioral effects of neural grafts: Action still in search of a mechanism. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis commentary reviews data supporting circuitry reconstruction, replacement neurotransmitters, and trophic action as mechanisms whereby transplants promote recovery of function. Issue is taken with the thesis of Sinden et al. that adequate data exist to indicate that reconstruction of hippocampal circuitry damaged by hypoxia with CA1 transplants is a confirmed mechanism whereby these transplants produce recovery. Sinden et al.'s and Stein & Glasier's proposal that there is definitive evidence showing that all transplants produce trophic effects is also questioned.
Collapse
|
45
|
Neural transplantation, cognitive aging and speech. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractResearch on neural transplantation has great potential societal importance in part because of the expanding proportion of the population that is elderly. Transplantation studies can benefit from the guidance of research on cognitive aging, especially in connection with the assessment of behavioral outcomes. Speech for example, might be explored using avian models.
Collapse
|
46
|
Pathway rewiring with neural transplantation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA lesion to the brain is not necessary for a successful neural transplantation. Embryonic Purkinje cells placed on the surface of an uninjured adult cerebellum can develop and migrate into the host molecular layer. Both the Purkinje cells that migrated into the host cerebellum and those that remained in the graft were innervated by collateral sprouting of adult intact climbing fibers.
Collapse
|
47
|
Abstract
AbstractIt is well established that neural grafts can exert functional effects on the host animal by a multiplicity of different mechanisms – by diffuse release of trophic molecules, neurohormones, and deficient neurotransmitters, as well as by growth and reformation of neural circuits. Our challenge is to understand how these different mechanisms complement each other.
Collapse
|
48
|
Grafts and the art of mind's reconstruction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe use of neural transplantation to alleviate cognitive deficits is still in its infancy. We have an inadequate understanding of the deficits induced by different types of brain damage and their homologies in animal models against which to assess graft-induced recovery, and of the ways in which graft growth and function are influenced by factors within the host brain and the environment in which the host is operating. Further, use of fetal tissue may only be a transitory phase in the search for appropriate donor sources. Nevertheless, findings from our laboratory and elsewhere have made aprima faciecase for successful cognitive reconstruction by graft methods.
Collapse
|
49
|
Studying restoration of brain function with fetal tissue grafts: Optimal models. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003750x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe concur that basic research on the use of CNS grafts is needed. Two important model systems for functional studies of grafts are ignored by Stein & Glasier. In the first, reproductive function is restored in hypogonadal mice by transplantation of GnRH-synthesizing neurons. In the second, circadian rhythmicity is restored by transplantation of the suprachiasmatic nucleus.
Collapse
|
50
|
Gene replacement therapy in the CNS: A view from the retina. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGene replacement therapy holds great promise in the treatment of many genetic CNS disorders. This commentary discusses the feasibility of gene replacement therapy in the unique context of the retina, with regard to: (1) the genetics of retinal neoplasia and degeneration, (2) available gene transfer technology, and (3) potential gene delivery vehicles.
Collapse
|