1
|
McNaughton N. Linking Anxiolytic Action to Hippocampal "Theta"-A Personal History. Hippocampus 2025; 35:e23653. [PMID: 39707694 DOI: 10.1002/hipo.23653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
This paper provides a personal history of work starting with the discovery that anxiolytic drugs reduce hippocampal theta frequency. It includes parallel work on septal elicitation of theta carried out in Jeffrey Gray's laboratory in Oxford; a statement of my original scientific perspective on the work; and a description of later work in my laboratory in New Zealand confirming the function of theta rhythmicity per se and its mediation of the effects of anxiolytic drugs on behavior. I finish with comments on risk management with such experiments and their use in larger scale theory development.
Collapse
Affiliation(s)
- N McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Young CK, McNaughton N. Mixed Effects of Low-dose Ethanol on Cortical and Hippocampal Theta Oscillations. Neuroscience 2020; 429:213-224. [DOI: 10.1016/j.neuroscience.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
3
|
Abstract
Abstract“Anxiety disorders” are extremely common; and are a major source of health costs and lost work days. Their diagnosis is currently based on clinical symptom check lists and there are no biological markers to diagnose specific syndromal causes. This paper describes: 1) a detailed theory of the brain systems controlling anxiolytic-insensitive threat-avoidance and anxiolytic-sensitive threat-approach — where, in specific brain structures, activity generates specific normal behaviours, hyperactivity generates abnormal behaviours, and hyper-reactivity (hypersensitivity to input) generates specific clinical syndromes; 2) a rodent model of systemic anxiolytic action (rhythmical slow activity), linked to the theory, that over a period of 40 years has shown predictive validity with no false positives or false negatives — and which is likely to assay the sensitivity of endogenous systems that control anxiety; and, 3) derivation from this rodent-based theory of a specific non-invasive biomarker (goal-conflict-specific rhythmicity) for the threat-approach system in humans. This new biomarker should allow division of untreated “anxiety” patients, with superficially similar clusters of symptoms, into distinct high scoring (syndromal) and low scoring groups with different treatment-responses. This would be the first theoretically-derived biomarker for any mental disorder and should: 1) predict treatment efficacy better than current symptom-based diagnoses; 2) provide a human single dose test of novel anxiolytics; 3) provide a starting point for developing biomarkers for other “anxiety” syndromes; and so, 4) greatly improve treatment outcomes and cost-effectiveness.
Collapse
|
4
|
Gilman JM, Ramchandani VA, Crouss T, Hommer DW. Subjective and neural responses to intravenous alcohol in young adults with light and heavy drinking patterns. Neuropsychopharmacology 2012; 37:467-77. [PMID: 21956438 PMCID: PMC3242308 DOI: 10.1038/npp.2011.206] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy alcohol consumption during young adulthood is a risk factor for the development of serious alcohol use disorders. Research has shown that individual differences in subjective responses to alcohol may affect individuals' vulnerability to developing alcoholism. Studies comparing the subjective and objective response to alcohol between light and heavy drinkers (HDs), however, have yielded inconsistent results, and neural responses to alcohol in these groups have not been characterized. We performed a double-blind, placebo-controlled, randomized crossover alcohol challenge study comparing functional magnetic resonance imaging and subjective response to intravenously administered 6% v/v ethanol to a target blood alcohol concentration of 0.08% or placebo between HDs and social drinkers (SDs). During the imaging, we presented emotional cues in order to measure how emotion modulated the effects of alcohol on the brain's reward circuitry. We found that, at equivalent blood alcohol concentrations, HDs reported lower subjective alcohol effects than SDs. Alcohol significantly activated the nucleus accumbens in SDs, but not in HDs. Self-reported ratings of intoxication correlated with striatal activation, suggesting that activation may reflect subjective experience of intoxication. Fearful faces significantly activated the amygdala in the SDs only, and this activation was attenuated by alcohol. This study shows that HDs not only experience reduced subjective effects of alcohol, but also demonstrate a blunted response to alcohol in the brain's reward system. Our findings indicate that reduced subjective and neural response to alcohol in HDs may be suggestive of either the development of tolerance to alcohol, or of pre-existing decreased sensitivity to alcohol's effects.
Collapse
Affiliation(s)
- Jodi M Gilman
- Section of Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vijay A Ramchandani
- Section of Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Tess Crouss
- Section of Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel W Hommer
- Section of Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Engin E, Treit D, Dickson CT. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 2009; 161:359-69. [PMID: 19321151 DOI: 10.1016/j.neuroscience.2009.03.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 11/25/2022]
Abstract
Ketamine, a dissociative anesthetic agent, appears to have rapid antidepressant effects at sub-anesthetic doses in clinically depressed patients. Although promising, these results need to be replicated in double-blind placebo-controlled studies, a strategy thwarted by the psychoactive effects of ketamine, which are obvious to both patients and clinicians. Alternatively, demonstrations of the psychotherapeutic effects of ketamine in animal models are also complicated by ketamine's side-effects on general activity, which have not been routinely measured or taken into account in experimental studies. In this study we found that ketamine decreased "behavioral despair" in the forced swim test, a widely used rats model of antidepressant drug action. This effect was not confounded by side-effects on general activity, and was comparable to that of a standard antidepressant drug, fluoxetine. Interestingly, ketamine also produced anxiolytic-like effects in the elevated-plus-maze. Importantly, the effective dose of ketamine in the plus-maze did not affect general locomotion measures, in either the plus-maze or in the open field test. While the selective N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 also produced antidepressant-like and anxiolytic-like effects, these were mostly confounded by changes in general activity. Finally, in a neurophysiological model of anxiolytic drug action, ketamine reduced the frequency of reticularly-activated theta oscillations in the hippocampus, similar to the proven anxiolytic drug diazepam. This particular neurophysiological signature is common to all known classes of anxiolytic drugs (i.e. benzodiazepines, 5-HT1A agonists, antidepressants) and provides strong converging evidence for the anxiolytic-like effects of ketamine. Further studies are needed to understand the underlying pharmacological mechanisms of ketamine's effects in these experiments, since it is not clear they were mimicked by the selective NMDA antagonist MK-801.
Collapse
Affiliation(s)
- E Engin
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|
6
|
Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ. Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 2008; 86:156-85. [PMID: 18824212 DOI: 10.1016/j.pneurobio.2008.09.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 07/24/2008] [Accepted: 09/03/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Damon J Mitchell
- Department of Psychology and Centre for Neuroscience, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
7
|
Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci 2008; 28:4583-91. [PMID: 18448634 DOI: 10.1523/jneurosci.0086-08.2008] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
People typically drink alcohol to induce euphoria or reduce anxiety, and they frequently drink in social settings, yet the effect of alcohol on human brain circuits involved in reward and emotion has been explored only sparingly. We administered alcohol intravenously to social drinkers while brain response to visual threatening and nonthreatening facial stimuli was measured using functional magnetic resonance imaging (fMRI). Alcohol robustly activated striatal reward circuits while attenuating response to fearful stimuli in visual and limbic regions. Self-ratings of intoxication correlated with striatal activation, suggesting that activation in this area may contribute to subjective experience of pleasure and reward during intoxication. These results show that the acute pharmacological rewarding and anxiolytic effects of alcohol can be measured with fMRI.
Collapse
|
8
|
Chapter 2.1 Theoretical approaches to the modeling of anxiety in animals. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00002-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol 2007; 18:329-46. [PMID: 17762505 DOI: 10.1097/fbp.0b013e3282ee82e3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hippocampal damage produces cognitive deficits similar to dementia and changes in emotional and motivated reactions similar to anxiolytic drugs. The gross electrical activity of the hippocampus contains a marked 'theta rhythm'. This is a relatively high voltage sinusoidal waveform, resulting from synchronous phasic firing of cells, variation in which correlates with behavioural state. Like the hippocampus, theta has been linked to both cognitive and emotional functions. Critically, it has recently been shown that restoration of theta-like rhythmicity can restore lost cognitive function. We review the effects of systemic administration of drugs on hippocampal theta elicited by stimulation of the reticular formation. We conclude that reductions in the frequency of reticular-elicited theta provide what is currently the best in-vivo means of detecting antianxiety drugs. We also suggest that increases in the power of reticular-elicited theta could detect drugs useful in the treatment of disorders, such as dementia, that involve memory loss. We argue that these functionally distinct effects should be seen as indirect and that each results from a change in a single form of cognitive-emotional processing that particularly involves the hippocampus.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
10
|
Da Silva GE, Vendruscolo LF, Takahashi RN. Effects of ethanol on locomotor and anxiety-like behaviors and the acquisition of ethanol intake in Lewis and spontaneously hypertensive rats. Life Sci 2005; 77:693-706. [PMID: 15922000 DOI: 10.1016/j.lfs.2005.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to investigate whether Lewis (LEW) and spontaneously hypertensive rats (SHR), characterized in numerous behavioral tests as strains with high-anxiety and low-anxiety, respectively, could differ in their sensitivity to the effects of ethanol in the elevated plus maze (EPM) and the open field (OF), two classical models of anxiety/emotionality, as well as in the acquisition of ethanol drinking behavior. It was also of interest to examine the relationship between sweet and bitter fluids preference and ethanol intake. SHR and LEW rats were given saline or ethanol injections (0.6 or 1.2 g/kg, ip.) and tested in the EPM and OF. Subsequently the same animals were given continuous free choice between water and ethanol solution (2-8%). Additional groups of animals were exposed to a free-choice regimen between saccharin (0.002-0.09%) or quinine (0.0001-0.0015%) and water. The low dose of ethanol (0.6 g/kg) induced anxiolytic-like effects and intensive locomotor activation mainly in SHR rats tested in the OF arena. Overall, LEW counterparts were unaffected in OF test. In oral self-administration paradigm, SHR rats consumed significantly more ethanol than LEW rats. Concerning other solutions, SHR rats consumed large amounts of saccharin compared with LEW rats. These data indicate that the SHR preference for ethanol intake may be positively related to their differential sensitivity to the anxiolytic/stimulant effects of ethanol and to the sensitivity of this strain for saccharin reinforcement. In addition, these findings provide evidence that the SHR strain may represent a useful genetic and pharmacological tool to investigate ethanol drinking traits.
Collapse
Affiliation(s)
- George E Da Silva
- Departamento de Ciências Farmacêuticas, Universidade Regional de Blumenau, FURB, R. São Paulo 2171, 89030-000, Blumenau-SC, Brasil
| | | | | |
Collapse
|
11
|
Morato GS, Ortiga RM, Ferreira VMM. Involvement of nitric oxide-dependent pathways of dorsolateral periaqueductal gray in the effects of ethanol in rats submitted to the elevated plus-maze test. Behav Brain Res 2004; 153:341-9. [PMID: 15265628 DOI: 10.1016/j.bbr.2003.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 12/10/2003] [Accepted: 12/12/2003] [Indexed: 11/18/2022]
Abstract
Our previous study showed the microinjection of drugs that influence the nitric oxide (NO)-mediated neurotransmission in the hippocampus impacts upon the anxiolytic-like effect of ethanol. In this study, we examined whether NO-dependent pathways of the dorsolateral periaqueductal gray (dlPAG) participate in the anxiolytic effect of ethanol in rats submitted to the elevated plus-maze test. We evaluated the impact on ethanol effects of the nitric oxide synthase (NOS) inhibitor 7-nitroindazole, the soluble guanylate cyclase inhibitor 1H-(1,2,4)-oxodiazolo (4,3-a) quinoxalin-1-one (ODQ), the cyclic guanylate monophosphate (cGMP) analogue 8-bromo-cGMP and the NO donor sodium nitroprusside. The results showed that ODQ and 7-nitroindazole increased the percentage of open arm entries and of time spent on open arms in the elevated plus maze in rats injected with ethanol at 1.0g/kg, a dose that did not produce anxiolysis per se. Conversely, 8-bromo-cGMP and sodium nitroprusside blocked the increased exploration of open arms exhibited by rats treated with a higher dose of ethanol (1.2g/kg). Taken together, the results suggest that the inhibition of NO-dependent pathways of the dlPAG enhances the anxiolytic effect of ethanol, whereas the activation of these pathways results in an opposite effect.
Collapse
Affiliation(s)
- Gina Struffaldi Morato
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.
| | | | | |
Collapse
|
12
|
McNaughton N, Corr PJ. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 2004; 28:285-305. [PMID: 15225972 DOI: 10.1016/j.neubiorev.2004.03.005] [Citation(s) in RCA: 804] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 12/01/2022]
Abstract
We present in this paper a picture of the neural systems controlling defense that updates and simplifies Gray's "Neuropsychology of Anxiety". It is based on two behavioural dimensions: 'defensive distance' as defined by the Blanchards and 'defensive direction'. Defensive direction is a categorical dimension with avoidance of threat corresponding to fear and approach to threat corresponding to anxiety. These two psychological dimensions are mapped to underlying neural dimensions. Defensive distance is mapped to neural level, with the shortest defensive distances involving the lowest neural level (periaqueductal grey) and the largest defensive distances the highest neural level (prefrontal cortex). Defensive direction is mapped to separate parallel streams that run across these levels. A significant departure from prior models is the proposal that both fear and anxiety are represented at all levels. The theory is presented in a simplified form that does not incorporate the interactions that must occur between non-adjacent levels of the system. It also requires expansion to include the dimension of escapability of threat. Our current development and these proposed future extensions do not change the core concepts originally proposed by Gray and, we argue, demonstrate their enduring value.
Collapse
Affiliation(s)
- Neil McNaughton
- Department Psychology and Neuroscience Research Centre, University of Otago, P.O. Box 56 Dunedin, New Zealand.
| | | |
Collapse
|
13
|
Ferreira VM, Morato GS. Influence of age and of pre-treatment with D-cycloserine on the behavior of ethanol-treated rats tested in the elevated plus-maze apparatus. Addict Biol 2003; 1:395-404. [PMID: 12893457 DOI: 10.1080/1355621961000125016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is evidence that ethanol is able to influence central functions through the antagonism of the NMDA-receptor system. It has been shown that this system is also involved in the modulation of anxiety-related behavior in rats. Recently, we observed gender- and age-related behavioral influences in rats tested on the elevated plus-maze apparatus The present study was undertaken in order to investigate: (1) the effects of ethanol (0.8, 1.0 or 1.2 g/kg, i.p.) on the behavior of male and female rats tested on the elevated plus-maze at 2, 3, 4 or 5 months of age; (2) the effect of the pre-treatment with D-cycloserine (3.0 or 6.0 mg/kg), an agonist of the glutamate NMDA-receptor system, 30 min before the ethanol (1.2 g/kg) injections, in rats tested in the elevated plus-maze at 2 months or 4 months of age. The results demonstrated that ethanol did not affect the time spent and the frequency of entries on the open arms of the elevated plus-maze in rats tested at 2 months of age, but increased these parameters in older animals. Moreover, the results showed that D-cycloserine, at doses that did not affect the behavior of control animals, antagonized the increased frequency of entries and time spent on open arms produced by ethanol in rats tested at 4 months of age. Our results suggest an age-related influence on the anxiolytic action of ethanol in rats tested in the elevated plus-maze. Moreover, the results suggest that the NMDA-receptor system can be involved in this effect, and strengthens the evidence for the participation of the NMDA-receptor system in anxiety-related behavior.
Collapse
Affiliation(s)
- V M Ferreira
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC, Brazil
| | | |
Collapse
|
14
|
Lodge DJ, Lawrence AJ. The effect of isolation rearing on volitional ethanol consumption and central CCK/dopamine systems in Fawn-Hooded rats. Behav Brain Res 2003; 141:113-22. [PMID: 12742247 DOI: 10.1016/s0166-4328(02)00328-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous studies have demonstrated that socially isolating rats (from weaning) produces a sustained anxious phenotype and an enhanced response to psychostimulant drugs such as amphetamine and cocaine. In addition, isolation rearing has been shown to induce significant changes in the mesolimbic dopamine system. These data indicate that isolation rearing not only induces an anxiogenic phenotype but also induces neurochemical changes in reward nuclei of the brain, which is correlated with an enhanced response to psychostimulants. For these reasons, the effect of isolation rearing on volitional ethanol consumption was examined in Fawn-Hooded (FH) rats and correlated with neurochemical changes in central dopamine and cholecystokinin systems. Social isolation from weaning produced an anxiogenic phenotype as measured by a decreased time spent on the open arms of an elevated plus-maze. Interestingly, isolation-rearing induced a greater proportion of FH rats to acquire preference for ethanol while having no effect on the amount of ethanol consumed by alcohol-preferring rats. In addition, isolation rearing induced a number of changes in central CCK/dopamine systems.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology, Monash University, P.O. Box 13E, Clayton, Vic. 3800, Australia.
| | | |
Collapse
|
15
|
Ferreira VM, Takahashi RN, Morato GS. Dexamethasone reverses the ethanol-induced anxiolytic effect in rats. Pharmacol Biochem Behav 2000; 66:585-90. [PMID: 10899374 DOI: 10.1016/s0091-3057(00)00255-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of intraperitoneal and intrahippocampal administration of the glucocorticoid dexamethasone were assessed regarding ethanol-induced anxiolysis in the elevated plus-maze in rats. Animals pretreated with systemic injections of dexamethasone (0.5, 1. 0, or 2.0 mg/kg, IP) 15 min before ethanol (1.2 g/kg, 14% w/v, IP) administration showed a significant dose-dependent attenuation of the increased percentage of frequency and time spent on open arms of the maze. However, IP dexamethasone treatment 4 h before the test had no effect. Unilateral intrahippocampal injection of dexamethasone (2 and 20 nmol in 0.5 microl) also significantly attenuated the increased exploration of the open arms induced by ethanol. The results are interpreted in terms of the modulation of the anxiolytic effects of ethanol by glucocorticoids and the possible involvement of hippocampus in this response. The rapid blockade of ethanol induced anxiolysis by dexamethasone strengthens the suggestion that a nongenomic mechanism may underlie this response.
Collapse
Affiliation(s)
- V M Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, SC, 88015-420, Florianópolis, Brazil
| | | | | |
Collapse
|
16
|
Moraes Ferreira VM, Morato GS. d-Cycloserine Blocks the Effects of Ethanol and HA-966 in Rats Tested in the Elevated Plus-Maze. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04501.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Effects of anticonvulsant agents and ethanol on the complexes of epileptic foci created by applications of bicuculline, strychnine, and penicillin in the rat brain cortex. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02463349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Sherif FM, Tawati AM, Ahmed SS, Sharif SI. Basic aspects of GABA-transmission in alcoholism, with particular reference to GABA-transaminase. Eur Neuropsychopharmacol 1997; 7:1-7. [PMID: 9088880 DOI: 10.1016/s0924-977x(96)00383-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuronal dysfunction is the neurobiological basis for alcoholic behaviour, and ethanol craving seems related to hypofunction of the GABA-ergic activity. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). In several studies, GABA has been shown to be an important target of ethanol in the CNS, partly, as a consequence of damage to membrane-bound enzymes and receptors. GABA is involved in mediating pre- and post-synaptic inhibition of neuronal activity. It is speculated that the initial excitatory effects of ethanol may be due to inhibition of GABA-ergic activity whereas the sedative effects of the higher doses may be mediated by the activation of this inhibitory system. In the CNS, GABA is synthesised from glutamic acid by the enzyme glutamate decarboxylase (GAD) and catabolized into succinic semialdehyde by the enzyme GABA-transaminase (GABA-T), which are pyridoxal phosphate (PLP) dependent enzymes. Platelet GABA-T was characterized as being similar to central GABA-T. Inhibition of GABA-T with certain potent and selective compounds markedly increases the levels of brain GABA. Experimentally, acute ethanol treatment does not alter GABA-T activity whereas chronic treatment produces an increase in the activity, though, with some reservations since a bimodal effect has been found in chronically ethanol-treated rats. Thus, as it will be discussed below, it may be suggested that GABA-T inhibitors (e.g. vigabatrin) could have a potential role in the treatment of alcoholism and in some of the problems of ethanol withdrawal and of other drugs of abuse. Related studies on metabolism and concentrations of GABA are also promising and show a greater increase in our understanding of the aetiology and treatment of ethanol dependence and withdrawal. In general, this article also reviews both the animal and clinical observations in the field of alcoholism with regard to the GABA system.
Collapse
Affiliation(s)
- F M Sherif
- Department of Pharmacology, Al-Fateh Medical University, Tripoli, Libya
| | | | | | | |
Collapse
|
19
|
Proctor WR, Soldo BL, Allan AM, Dunwiddie TV. Ethanol enhances synaptically evoked GABAA receptor-mediated responses in cerebral cortical neurons in rat brain slices. Brain Res 1992; 595:220-7. [PMID: 1334772 DOI: 10.1016/0006-8993(92)91053-h] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous intracellular electrophysiological studies on rat hippocampal brain slices have shown very little effect of acute ethanol application on synaptically evoked GABAA receptor-mediated responses recorded in CA1 pyramidal neurons. The present study was designed to compare the effects of ethanol on pyramidal neurons in the hippocampus and cerebral cortex. Using conventional intracellular microelectrodes (60-80 M omega) to impale cortical neurons in brain slices, 80 mM ethanol application did not affect the membrane input impedance nor evoked EPSPs, but significantly affected the resting membrane potential (usually a 2-5 mV hyperpolarization). When stimulus-evoked GABAA-mediated IPSCs were studied using whole-cell recordings from cortical neurons voltage-clamped at depolarizing potentials, monophasic IPSCs were evoked that were blocked by bicuculline, increased by pentobarbital, and enhanced by ethanol superfusion in a dose dependent manner over the range of 20-160 mM. Hippocampal IPSCs recorded under identical conditions were not enhanced by ethanol. Parallel studies of GABA-stimulated 36Cl- flux measurements in microsacs prepared from hippocampal, cerebral cortical and cerebellar tissue demonstrated that ethanol significantly enhanced (30-50%) 36Cl- flux in microsacs derived from the cerebral cortex and cerebellum, but not in microsacs prepared from the hippocampus. These results demonstrate that there are clear brain region-dependent differences in the way that GABAA receptor function is altered by acute ethanol, and that these differences are apparent not only as an enhancement of responses to exogenous GABA, but also as a facilitation of the responses to endogenous GABA released from inhibitory nerve terminals during synaptic activation.
Collapse
Affiliation(s)
- W R Proctor
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
20
|
Risinger FO, Malott DH, Riley AL, Cunningham CL. Effect of Ro 15-4513 on ethanol-induced conditioned place preference. Pharmacol Biochem Behav 1992; 43:97-102. [PMID: 1409822 DOI: 10.1016/0091-3057(92)90644-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The benzodiazepine receptor inverse agonist Ro 15-4513 reverses a number of ethanol's effects, including its reinforcing properties as measured through self-administration. The present study examined the effect of this putative ethanol antagonist in a place conditioning design that has been shown to be sensitive to ethanol's rewarding properties in mice. Using an unbiased differential conditioning procedure, DBA/2J mice received, on alternate days, pairings of a distinctive floor stimulus (CS+) with either ethanol (2 g/kg), Ro 15-4513 (3 mg/kg), or a combination of ethanol and Ro 15-4513. On alternate days, a different distinctive floor stimulus (CS-) was paired with vehicle. Under these conditions, ethanol produced a conditioned place preference that was unaffected by Ro 15-4513. Ro 15-4513 alone did not produce either a place preference or aversion. Ro 15-4513 did produce reductions in locomotor activity during conditioning, indicating it was behaviorally active. These results indicate that a dose of Ro 15-4513 that alters general activity does not affect ethanol reward.
Collapse
Affiliation(s)
- F O Risinger
- Department of Medical Psychology, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | |
Collapse
|
21
|
Abstract
Classical anxiolytic drugs and hippocampal lesions have common behavioural effects that include loss of place navigation in the water maze. The novel anxiolytic drug buspirone, unlike classical anxiolytic drugs, does not interact with GABA and is not muscle relaxant, sedative, hypnotic, anticonvulsant, or addictive. Buspirone affects hippocampal electrophysiology in a similar fashion to classical anxiolytics and so we predicted it would have similar effects on spatial navigation. Rats injected with buspirone (0.1-10.0 mg/kg, IP) showed a loss of acquisition of spatial navigation in the water maze that has a similar dose dependence to that reported for the effects of buspirone on the hippocampus. This finding demonstrates that the effects of anxiolytics on spatial navigation are not due to their side effects and supports the view that changes in hippocampal function may underlie some components of clinical anxiolytic action.
Collapse
Affiliation(s)
- N McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
22
|
Coop CF, McNaughton N, Scott DJ. Pindolol antagonizes the effects on hippocampal rhythmical slow activity of clonidine, baclofen and 8-OH-DPAT, but not chlordiazepoxide and sodium amylobarbitone. Neuroscience 1992; 46:83-90. [PMID: 1350666 DOI: 10.1016/0306-4522(92)90010-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Buspirone, benzodiazepines, barbiturates and ethanol all reliably reduce the frequency of reticular-elicited hippocampal rhythmical slow activity. In the present experiments we tested a number of drugs which are not usually used for treating generalized anxiety disorders but which have been reported to have some anxiolytic properties. Clonidine (0.3 mg/kg, i.p.), baclofen (6 mg/kg, i.p.) and 8-hydroxy-di-n-propylamino tetralin (8-OH-DPAT) (2.5 mg/kg, i.p.) all reduced the frequency of rhythmical slow activity. The effect of all three drugs was reduced by the 5-hydroxytryptamine 1a antagonist pindolol (2 mg/kg, i.p.). Pindolol had no effect on the reduction in rhythmical slow activity produced by sodium amylobarbitone, as has been previously reported for the benzodiazepine chlordiazepoxide. Flumazenil (10 mg/kg, i.p.), a benzodiazepine receptor antagonist, reduced the effects of chlordiazepoxide (5 mg/kg, i.p.), but not buspirone (10 mg/kg, i.p.). A combination of the selective beta 1 adrenergic receptor antagonist metoprolol (20 mg/kg, i.p.) and the beta 2 adrenergic receptor antagonist ICI 118,551 (4 mg/kg, i.p.) did not reduce the effects of either buspirone (10 mg/kg, i.p.) or diazepam (1 mg/kg, i.p.). These data show that there are at least two separate routes through which anxiolytic agents reduce the frequency of hippocampal rhythmical slow activity. Buspirone, clonidine, baclofen and 8-OH-DPAT act via a system dependent on 5-hydroxytryptamine 1a receptor activation. Benzodiazepines act via activation of the benzodiazepine receptor and probably share with barbiturates action at the GABA-benzodiazepine-chloride ionophore complex but do not produce their effects, directly or indirectly, by 5-hydroxytryptamine 1a receptor activation.
Collapse
Affiliation(s)
- C F Coop
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
23
|
McNaughton N, Coop CF. Neurochemically dissimilar anxiolytic drugs have common effects on hippocampal rhythmic slow activity. Neuropharmacology 1991; 30:855-63. [PMID: 1780042 DOI: 10.1016/0028-3908(91)90119-v] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous experiments have shown that anxiolytic drugs reduce the frequency of hippocampal rhythmic slow activity, induced by high frequency stimulation of the reticular formation and flatten the function relating threshold septal stimulation to the frequency of driven rhythmic slow activity. All of the drugs involved are known to augment GABAergic transmission. The present experiments investigated the effects of the novel anxiolytic compound buspirone which, unlike conventional anxiolytics, does not interact with GABA, yet is a clinically effective anxiolytic. Buspirone (0.156-40 mg/kg, i.p.) was found to reduce the frequency of reticular-elicited rhythmic slow activity, in a similar manner to chlordiazepoxide (0.019-20 mg/kg, i.p.). Buspirone did not change the linearity of the voltage-frequency function. Buspirone (10 mg/kg, i.p.) also altered the threshold for septal driving of rhythmic slow activity, in a similar manner to classical anxiolytics. The combination of chlordiazepoxide (5 mg/kg, i.p.) with corticosterone (0.2 mg, s.c.) removed the minor differences between buspirone and chlordiazepoxide in both the septal and reticular tests. These results show that buspirone altered the control of rhythmic slow activity in the hippocampus, in a manner which appeared functionally equivalent to other anxiolytics but which depends on mechanisms which are likely to be neurally and pharmacologically distinct from those of other anxiolytic drugs.
Collapse
Affiliation(s)
- N McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|