1
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
2
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Crespi F. In vivo voltammetric evidence that cerebral nitric oxide (NO) is influenced by drugs of abuse: is NO implicated in their neurotoxicity? RSC Adv 2013. [DOI: 10.1039/c3ra40804c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
|
6
|
|
7
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
|
9
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
|
12
|
|
13
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
|
15
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
|
17
|
Crespi F. The selective serotonin reuptake inhibitor fluoxetine reduces striatal in vivo levels of voltammetric nitric oxide (NO): A feature of its antidepressant activity? Neurosci Lett 2010; 470:95-9. [DOI: 10.1016/j.neulet.2009.12.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/16/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
|
18
|
Currie DA, Corlew R, de Vente J, Moody WJ. Elevated glutamate and NMDA disrupt production of the second messenger cyclic GMP in the early postnatal mouse cortex. Dev Neurobiol 2009; 69:255-66. [PMID: 19172658 DOI: 10.1002/dneu.20697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) plays many roles during nervous system development. Consequently, cGMP production shows complex patterns of regulation throughout early development. Elevated glutamate levels are known to increase cGMP levels in the mature nervous system. A number of clinical conditions including ischemia and perinatal asphyxia can result in elevated glutamate levels in the developing brain. To investigate the effects of elevated glutamate levels on cGMP in the developing cortex we exposed mouse brain slices to glutamate or N-methyl D-aspartate (NMDA). We find that at early postnatal stages when the endogenous production of cGMP is high, glutamate or NMDA exposure results in a significant lowering of the overall production of cGMP in the cortex, unlike the situation in the mature brain. However, this response pattern is complex with regional and cell-type specific exceptions to the overall lowered cGMP production. These data emphasize that the response of the developing brain to physiological disturbances can be different from that of the mature brain, and must be considered in the context of the developmental events occurring at the time of disturbance.
Collapse
Affiliation(s)
- Douglas A Currie
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
19
|
Morizane I, Hakuba N, Hyodo J, Shimizu Y, Fujita K, Yoshida T, Gyo K. Ischemic damage increases nitric oxide production via inducible nitric oxide synthase in the cochlea. Neurosci Lett 2005; 391:62-7. [PMID: 16154689 DOI: 10.1016/j.neulet.2005.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 01/09/2023]
Abstract
The present study was designed to elucidate the dynamic changes of nitric oxide (NO) production in the perilymph and to investigate the immunostaining for inducible nitric oxide synthase (iNOS) in the cochlea for 7 days after transient cochlear ischemia. Moreover, aminoguanidine, which is a selective iNOS inhibitor, was administrated immediately following ischemia and every 24h thereafter for 7 days to investigate whether the production of NO is dependent on the iNOS pathway. Significant increases in the oxidative NO metabolites, nitrite (NO(2)(-)) and nitrate (NO(3)(-)), were measured on day 1 using an in vivo microdialysis and on-line high performance liquid chromatography (HPLC) system. The immunostaining for iNOS was strongly expressed on days 1 and 4 and returned to normal on day 7 after the ischemia. The administration of aminoguanidine reduced the oxidative NO metabolites on day 1 and suppressed the expression of iNOS. These findings suggest that transient ischemia causes a remarkable increase in NO production in the perilymph, which might be attributable to the iNOS pathway.
Collapse
Affiliation(s)
- Isao Morizane
- Department of Otolaryngology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Watts J, Whitton PS, Pearce B. Unexpected effects of nitric oxide synthase inhibitors on extracellular nitrite levels in the hippocampus in vivo. Pharmacology 2005; 74:163-8. [PMID: 15897676 DOI: 10.1159/000085774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine whether extracellular nitric oxide levels in the hippocampus of freely moving animals were reduced by the administration of nitric oxide synthase (NOS) inhibitors via a microdialysis probe. Our results show that extracellular nitrite levels were increased following the infusion of N-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI), in the case of the latter, the response was biphasic. In contrast, infusion of both inhibitors together resulted in a substantial reduction in nitrite when compared to control. More predictably, the infusion of NMDA elicited an increase in extracellular nitrite levels. This effect was biphasic, the second phase occurring some 3 h after the drug infusion period had ended. When NMDA was infused in the presence of L-NAME, no agonist-induced increase in nitrite production was recorded, in fact nitrite levels were found to decline to below control values. There was no immediate increase in nitrite levels when NMDA was infused in the presence of 7-NI, although this may have been partially obscured by the biphasic effect of the inhibitor. It did appear, however, that the second phase of the NMDA-induced response was attenuated by 7-NI. No NMDA-evoked increase in nitrite was evident when the agonist was infused in the presence of a combination of both inhibitors. We have no clear explanation for the data presented here but suggest that up-regulated activity of particular NOS isoforms might compensate for the inhibition of the other by a mechanism yet to be elucidated. In addition, we propose that caution be exercised when interpreting results from in vivo microdialysis studies where NOS inhibitors are administered directly into the brain via a probe.
Collapse
Affiliation(s)
- Jo Watts
- Department of Pharmacology, The School of Pharmacy, London, UK
| | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE Previous studies indicate that the nitric oxide (NO(.)) pathway is involved in the acute or chronic effects of ethanol on the central nervous system. However, direct evidence for the effect of ethanol on NO(.) production in vivo is lacking, and it is not clear whether it is inhibition or stimulation of the NO(.) pathway that contributes to the behavioral effects of ethanol. Herein the release of NO(.) in the rat striatum in vivo in response to NMDA receptor activation--the dominant mechanism controlling NO(.) formation-has been investigated after systemic or local injections of ethanol. METHODS NMDA-induced release of authentic NO(.) was measured directly in the striatum of urethane-anesthetized (1.2 g/kg intraperitoneally) male Sprague-Dawley rats by using a direct-current amperometric method coupled to an electrically modified carbon microelectrode. An injector cannula was implanted in the proximity of the electrode (250 microm apart) for focal drugs application. RESULTS Local application of NMDA (1 microl, 100 microM) produced a sharp and transient NO(.) signal. Systemic ethanol, 1 or 2.5 g/kg intraperitoneally, caused a long-lasting, dose-dependent inhibition of NMDA-induced NO(.) release to 12.2 +/- 5.9 and 6.4 +/- 3.7% of control, respectively, 60 min after ethanol administration. Dizocilpine (0.5 mg/kg intraperitoneally) mimicked the ethanol effect, inhibiting NO release to 1.6 +/- 0.66% of control. Local application of ethanol (1 microl, 2.5% v/v) in the striatum reduced the NMDA-induced response to 28.6 +/- 3.8% of control. Focal application of the competitive NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (100 microM) or the nonselective NO synthase inhibitor L-N(G)-nitro-arginine methyl esther (100 microM) also caused inhibition of NMDA-induced NO(.) release to 2.4 +/- 0.7 and 4.3 +/- 0.9% of control, respectively. CONCLUSIONS Ethanol, at pharmacologically significant doses, strongly inhibits striatal NO(.) production and release apparently through inhibition of NMDA receptor function. Inhibition of NMDA receptor-mediated activation of the NO(.) pathway could be a primary neurobiological mechanism contributing to the effects of ethanol.
Collapse
Affiliation(s)
- Zvani L Rossetti
- Department of Neuroscience and CNR Institute of Neuroscience, University of Cagliari, Cittadella di Monserrato, 09042 Monserrato, Italy.
| | | |
Collapse
|
22
|
Abstract
Already 30 years ago, it became apparent that there exists a relationship between acetylcholine and cGMP in the brain. Acetylcholine plays a role in a great number of processes in the brain, however, the role of cGMP in these processes is not known. A review of the data shows that, although the connection between NO-mediated cGMP synthesis and acetylcholine is firmly established, the complexities of the heterosynaptic pathways and the oligosynaptic structures involved preclude a clear definition of the role of cGMP in the functioning of acetylcholine presently.
Collapse
Affiliation(s)
- Jan de Vente
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Maastricht University, UNS50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
23
|
Crespi F, Rossetti ZL. Pulse of nitric oxide release in response to activation of N-methyl-D-aspartate receptors in the rat striatum: rapid desensitization, inhibition by receptor antagonists, and potentiation by glycine. J Pharmacol Exp Ther 2004; 309:462-8. [PMID: 14724219 DOI: 10.1124/jpet.103.061069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased activity of glutamate N-methyl-d-aspartate (NMDA) receptors is the dominant mechanism by which nitric oxide (NO.) is generated. By using a selective direct-current amperometry method, we characterized real time NO* release in vivo in response to chemical stimulation of NMDA receptors in the rat striatum. The application of NMDA caused the appearance of a sharp and transient oxidation signal. Concentration-response studies (10-500 microM) indicated an EC(50) of 48 microM. The NMDA-induced amperometric signal was suppressed by focal application of the nitric-oxide synthase inhibitor L-nitro-arginine methyl ester (L-NAME, 100 microM) or D-(-)-2-amino-5-phosphonopentanoic acid (AP-5, 100 microM) or by systemic injection of dizocilpine (1 mg/kg i.p.), drugs that, when given alone, had no effect on baseline oxidation current. Repeated injections of NMDA at short intervals (approximately 80 s) resulted in a progressive reduction of the amperometric signal with a decay half-life of 1.36 min. Sixty min after the last NMDA application the amperometric response was restored to initial levels. Finally, the coapplication of glycine (50 or 100 microM), which, when given alone had no effect, potentiated the NMDA-induced response. Thus, NMDA receptor-mediated activation of striatal NO* system shuts off quickly and undergoes rapid desensitization, suggesting a feedback inhibition of NMDA receptor function. To the extent of NO* release can represent a correlate of NMDA receptor activity, its amperometric detection could be useful to assess in vivo the state of excitatory transmission under physiological, pharmacological, or pathological conditions.
Collapse
Affiliation(s)
- Francesco Crespi
- CEDD Psychiatry, Department of Biology, GlaxoSmithKline, Verona, Italy
| | | |
Collapse
|
24
|
Shima H, Fujisawa H, Suehiro E, Uetsuka S, Maekawa T, Suzuki M. Mild Hypothermia Inhibits Exogenous Glutamate-Induced Increases in Nitric Oxide Synthesis. J Neurotrauma 2003; 20:1179-87. [PMID: 14651805 DOI: 10.1089/089771503770802862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to investigate changes in nitric oxide (NO) synthesis induced by exogenous glutamate perfusion into the cerebral cortex, and the effects of mild hypothermia on this glutamate-induced NO synthesis. Glutamate-induced cortical lesions were produced by perfusion of 0.5 M glutamate solution via a microdialysis probe, and the extracellular concentrations of NO end-products (nitrite and nitrate) were measured by microdialysis in normothermic (37 degrees C) and hypothermic (32 degrees C) rats. The levels of NO end-products in the normothermia group were elevated markedly by glutamate perfusion, and this change was completely attenuated by the induction of hypothermia. The glutamate-induced increases were also attenuated markedly by both Nomega-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI). These results suggest that the perfusion of exogenous glutamate into the cortex induces NO synthesis, that is derived primarily from the activity of neuronal NO synthase. These results also demonstrate that hypothermia prevents this glutamate-induced increase in NO, suggesting that the protection afforded by the hypothermic condition is most likely linked to its inhibition of the glutamate-induced NO synthesis.
Collapse
Affiliation(s)
- Hidehiro Shima
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Onal A, Delen Y, Ulker S, Soykan N. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum. Life Sci 2003; 73:413-28. [PMID: 12759136 DOI: 10.1016/s0024-3205(03)00297-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effect of agmatine (10-400 mg/kg) on neuropathic pain in a rat model produced by loose ligatures around the common sciatic nerve was studied. The involvement of possible alterations in nitric oxide (NO) levels [measured as its stable metabolites nitrate + nitrite] and in noradrenergic activity [measured as norepinephrine and 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) levels] in this effect was also investigated biochemically in the brainstem and cerebellum. Agmatine increased the neuropathic pain threshold at 300 and 400 mg/kg. There was almost a twofold increase in nitrate + nitrite levels in the brainstem and cerebellum of the rats with neuropathic pain and agmatine decreased the high nitrate + nitrite levels only in the brainstem at 300 mg/kg and both in the brainstem and cerebellum at 400 mg/kg. Ligation of sciatic nerve resulted in almost twofold increase in norepinephrine and MHPG levels only in the brainstem of the rats. Agmatine decreased MHPG levels at 300 and 400 mg/kg, however it decreased norepinephrine levels only at the higher dose. These findings indicate that agmatine decreases neuropathic pain, an effect which may involve the reduction of NO levels and noradrenergic activity in the brain.
Collapse
Affiliation(s)
- Aytül Onal
- Department of Pharmacology, Faculty of Medicine, Ege University 35100, Izmir, Turkey.
| | | | | | | |
Collapse
|
26
|
Lapouble E, Montécot C, Sevestre A, Pichon J. Phosphinothricin induces epileptic activity via nitric oxide production through NMDA receptor activation in adult mice. Brain Res 2002; 957:46-52. [PMID: 12443979 DOI: 10.1016/s0006-8993(02)03597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphinothricin (PPT), the active component of a widely used herbicide, induces convulsions in rodents and humans. PPT shares structural analogy with glutamate, which could explain its powerful inhibitory effect on glutamine synthetase and its probable binding to glutamate receptors. To characterize the epileptogenic effect of PPT, electrographic and behavioural studies were carried out on PPT-treated adult mice. We investigated the role of N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) production in induction of seizures triggered by PPT, by using specific NMDA antagonist and nitric oxide synthase (NOS) inhibitor. The inhibitory effect of PPT on glutamine synthetase of mouse brain was assessed after in vitro and in vivo treatments. The results obtained show that PPT induces tonic-clonic seizures and generalized convulsions in mice. They suggest that these seizures are mediated through an NMDA receptor activation and NO production, without involvement of inhibition of glutamine synthetase.
Collapse
Affiliation(s)
- Eve Lapouble
- Laboratoire du Métabolisme Cérébral et Neuropathologies (MCN), UPRES 2633, Université d'Orléans, avenue du parc floral, BP 6759, 45 067 Orléans cedex 2, France
| | | | | | | |
Collapse
|
27
|
González-Mora JL, Martín FA, Rojas-Díaz D, Hernández S, Ramos-Pérez I, Rodríguez VD, Castellano MA. In vivo spectroscopy: a novel approach for simultaneously estimating nitric oxide and hemodynamic parameters in the rat brain. J Neurosci Methods 2002; 119:151-61. [PMID: 12323419 DOI: 10.1016/s0165-0270(02)00175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is a versatile molecule involved in a wide range of biological processes. Under physiological conditions, NO reacts with oxyhemoglobin (OxyHb) to form methemoglobin (MetHb) at a very high rate. Microdialysis studies have used hemoglobin solutions as a trapping method to quantify NO in vivo. The methodology described here uses the microcapillary network with endogenous OxyHb instead of microdialysis probe with exogenous OxyHb for monitoring MetHb as an indirect index of NO levels by in vivo spectroscopy using optical fibers. This new method has been validated in rat cerebral cortex by the infusion of NO or well-known drug-induced changes in NO concentration (NMDA agonists and a NO-synthase inhibitor) and by comparing results with simultaneous voltammetric recordings. Results indicate that this spectroscopy technique is able to record large increases in MetHb levels and to detect reductions of its basal levels. In addition, data show that similar changes and kinetics can be observed with both techniques. Thus, intravascular MetHb can be used as an indirect index of NO levels. It is proposed that in vivo spectroscopy may be a useful tool to gain insight into the roles of NO in hemodynamic parameters and in other physiological processes such as the regulation of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Jose L González-Mora
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, Tenerife 38071, Canary Islands, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mas M, Escrig A, Gonzalez-Mora JL. In vivo electrochemical measurement of nitric oxide in corpus cavernosum penis. J Neurosci Methods 2002; 119:143-50. [PMID: 12323418 DOI: 10.1016/s0165-0270(02)00173-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A wealth of pharmacological studies suggest that nitric oxide (NO) generated in the corpus cavernosum is a main molecular mediator of penile erection. However, the physiological levels of NO in the corpora and their possible changes during penile erection have remained unknown for want of suitable methodologies. We have adapted a voltammetric procedure, derived from Malinski's method, for assessing NO levels in the penis in vivo. Differential normal pulse voltammetry with carbon fiber electrodes (30 microm) coated with a polymeric porphyrin and Nafion was used to measure the NO oxidation current in the corpora cavernosa of urethane-anesthetized rats. The intracavernous pressure was monitored simultaneously. A NO oxidation peak was consistently detected at approximately 650 mV both in NO solutions and in the corpora in vivo. The changes in the NO signals observed in vitro were consistent with the concentration values measured by chemiluminescence. The NO signal recorded in vivo increased following cavernous nerve stimulation and was greatly decreased by intracavernous injections of several inhibitors of the neuronal and endothelial NO synthase isoenzymes. Such results agree with our previous studies using this methodology and substantiate further its validity for monitoring the physiological changes in NO levels in the penis.
Collapse
Affiliation(s)
- Manuel Mas
- Department of Physiology and CESEX, School of Medicine, University of La Laguna, 38071 Tenerife, Spain.
| | | | | |
Collapse
|
29
|
Uetsuka S, Fujisawa H, Yasuda H, Shima H, Suzuki M. Severe cerebral blood flow reduction inhibits nitric oxide synthesis. J Neurotrauma 2002; 19:1105-16. [PMID: 12482122 DOI: 10.1089/089771502760342009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to investigate the relationship between cerebral blood flow (CBF) and nitric oxide (NO) synthesis using a rat model of transient forebrain ischemia of varying severity. Forebrain ischemia was induced for 30 min by occlusion of the bilateral common carotid arteries without hemorrhagic hypotension. The production of NO end-products (nitrite and nitrate) was measured by in vivo microdialysis, and CBF by the hydrogen clearance technique. Ischemia induced NO synthesis, although the increase in the quantity of NO end-products was not remarkable during the ischemic period but became prominent after reperfusion. Such increases were abolished by Nomega-nitro-L-arginine methyl ester (L-NAME), although 7-nitroindazole (7-NI) appeared to have only slight effects. The production of NO end-products during ischemia increased when the CBF during ischemia was less than 60 mL/100 g/min. In animals in which the CBF during ischemia was higher than 22.7 mL/100 g/min, the production of NO end-products increased gradually after the induction of ischemia and reached a peak during the reperfusion period, whereas in other animals in which the CBF during ischemia fell below 22.7 mL/100 g/min, the NO end-products decreased during ischemia and increased transiently after reperfusion. These results suggest that the increase in NO end-products is NO synthase (NOS)-dependent and that most of the increase is derived from endothelial NOS. It is also suggested that NO synthesis during ischemia is closely related to CBF, and that severe CBF reduction may inhibit NO synthesis.
Collapse
Affiliation(s)
- Shinpei Uetsuka
- Department of Neurosurgery, Clinical Neuroscience, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
30
|
Heiberg IL, Wegener G, Rosenberg R. Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002; 134:479-84. [PMID: 12191834 DOI: 10.1016/s0166-4328(02)00084-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The forced swimming test (FST) has been extensively used as a screening model for new antidepressant agents. It has been shown that drugs which reduce the amount of nitric oxide (NO) have the same outcome in this model as classic antidepressants. In addition, previous studies have shown that methylene blue, which acts as a direct inhibitor of both NOS and soluble guanylate cyclase (sGC), mimics the effect of clinically effective antidepressants in patients and in the FST. The present study examined the effects of the specific inhibitor of the NO-sGC pathway, [1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one] (ODQ) and of the neuronal NOS inhibitor 7-nitroindazole (7-NI) in the FST. We found that ODQ (10 and 20 mg/kg) significantly decreased the immobility time in the FST compared to the control. Similarly, injections of 7-NI (30 or 60 mg/kg) reduced immobility time as well as Imipramine (IMI, 30 mg/kg). Interestingly, L-Arginine (250 mg/kg) administered in combination with ODQ reversed the effect of ODQ but displayed no effect when administered alone. Locomotion activity was significantly decreased following administration of IMI (30 mg/kg) and 7-NI (30 and 60 mg/kg) but was unaffected after administration of ODQ (10 and 20 mg/kg). These findings suggest that the NO-sGC-cGMP pathway may play an important role in the mediation of the behavioural effect in the FST without influence on motor activity.
Collapse
Affiliation(s)
- Ida Louise Heiberg
- Institute for Basic Psychiatric Research, Department of Biological Psychiatry, Skovagervej 2, DK-8240 Risskov, Denmark
| | | | | |
Collapse
|
31
|
Yamada J, Hirose H, Sugimoto Y. Nitric oxide production in hypothalamus of 2-deoxy-D-glucose-treated and food deprived mice. Neurosci Lett 2002; 327:107-10. [PMID: 12098647 DOI: 10.1016/s0304-3940(02)00396-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) has been suggested to be involved in the regulation of food intake. In the present study, NO metabolite (nitrite and nitrate, NOx) levels in the hypothalamus were determined in hyperphagic mice. In normal mice, NOx levels were higher in the hypothalamus than those in frontal cortex. Although 2-deoxy-D-glucose (2-DG) is known to induce hyperphagia by inhibiting glucose utilization, it did not affect NOx levels in the hypothalamus of mice. NOx concentration in the hypothalamus decreased in 48 h-food deprived mice. In the frontal cortex, neither 2-DG nor food deprivation affected NOx levels. These results suggest that NO production in the hypothalamus does not increase in 2-DG-elicited hyperphagia and that food deprivation reduces hypothalamic NO, probably by inhibiting NO synthase.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Pharmacology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | |
Collapse
|
32
|
Facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum. J Neurosci 2002. [PMID: 11880523 DOI: 10.1523/jneurosci.22-05-01929.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a microsuperfusion method in vitro, the effects of the NK1, NK2, and NK3 tachykinin receptor antagonists SR140333, SR48968, and SR142801, respectively, on the NMDA-evoked release of [3H]-acetylcholine were investigated after both acute and chronic suppression of dopamine transmission in striosomes and matrix of the rat striatum. NMDA (1 mm) alone or with D-serine (10 microm) in the presence of alpha-methyl-p-tyrosine (100 microm) markedly enhanced the release of [3H]-acetylcholine through a dopamine-independent inhibitory process. In both conditions, as well as after chronic 6-OHDA-induced denervation of striatal dopaminergic fibers, SR140333, SR48968, or SR142801 (0.1 microm each) reduced the NMDA-evoked release of [3H]-acetylcholine in the matrix but not in striosome-enriched areas. These responses were selectively abolished by coapplication with NMDA of the respective tachykinin agonists, septide, [Lys5,MeLeu9,Nle10]NKA(4-10), or senktide. Distinct mechanisms are involved in the effects of the tachykinin antagonists because the inhibitory response of SR140333 was additive with that of either SR48968 or SR142801. In addition, the SR140333-evoked response remained unchanged, whereas those of SR48968 and SR142801 were abolished in the presence of N(G)-monomethyl-l-arginine (nitric oxide synthase inhibitor). Therefore, in the matrix but not in striosomes, the acute or chronic suppression of dopamine transmission unmasked the facilitatory effects of endogenously released substance P, neurokinin A, and neurokinin B on the NMDA-evoked release of [3H]-acetylcholine. Whereas substance P and neurokinin A are colocalized in same efferent neurons, their responses involve distinct circuits because the substance P response seems to be mediated by NK1 receptors located on cholinergic interneurons, while those of neurokinin A and neurokinin B are nitric oxide-dependent.
Collapse
|
33
|
Leonard CS, Michaelis EK, Mitchell KM. Activity-dependent nitric oxide concentration dynamics in the laterodorsal tegmental nucleus in vitro. J Neurophysiol 2001; 86:2159-72. [PMID: 11698508 DOI: 10.1152/jn.2001.86.5.2159] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The behavioral-state related firing of mesopontine cholinergic neurons of the laterodorsal tegmental nucleus appears pivotal for generating both arousal and rapid-eye-movement sleep. Since these neurons express high levels of nitric oxide synthase, we investigated whether their firing increases local extracellular nitric oxide levels. We measured nitric oxide in the laterodorsal tegmental nucleus with a selective electrochemical microprobe (35 microm diam) in brain slices. Local electrical stimulation at 10 or 100 Hz produced electrochemical responses that were attributable to nitric oxide. Stimulus trains (100 Hz; 1 s) produced biphasic increases in nitric oxide that reached a mean peak concentration of 33 +/- 2 (SE) nM at 4.8 +/- 0.4 s after train onset and decayed to a plateau concentration of 8 +/- 1 nM that lasted an average of 157 +/- 23.4 s (n = 14). These responses were inhibited by N(G)-nitro-L-arginine-methyl-ester (1 mM; 92% reduction of peak; n = 3) and depended on extracellular Ca(2+). Chemically reduced hemoglobin attenuated both the electrically evoked responses and those produced by authentic nitric oxide. Application of the precursor, L-arginine (5 mM) augmented the duration of the electrically evoked response, while tetrodotoxin (1 microM) abolished it. Analysis of the stimulus-evoked field potentials indicated that electrically evoked nitric oxide production resulted from a direct, rather than synaptic, activation of laterodorsal tegmental neurons because neither nitric oxide production nor the field potentials were blocked by ionotropic glutamate receptor inhibitors. Nevertheless, application of N-methyl-D-aspartate also increased local nitric oxide concentration by 39 +/- 14 nM (n = 8). Collectively, these data demonstrate that laterodorsal tegmental neuron activity elevates extracellular nitric oxide concentration probably via somatodendritic nitric oxide production. These data support the hypothesis that nitric oxide can function as a local paracrine signal during the states of arousal and rapid-eye-movement sleep when the firing of mesopontine cholinergic neurons are highest.
Collapse
Affiliation(s)
- C S Leonard
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
34
|
Crespi F, Campagnola M, Neudeck A, McMillan K, Rossetti Z, Pastorino A, Garbin U, Fratta-Pasini A, Reggiani A, Gaviraghi G, Cominacini L. Can voltammetry measure nitrogen monoxide (NO) and/or nitrites? J Neurosci Methods 2001; 109:59-70. [PMID: 11489301 DOI: 10.1016/s0165-0270(01)00402-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, voltammetry with carbon fibre electrodes (CFE) has been implemented for real time measurement of nitrogen monoxide (NO) indicating that it is oxidised at the potential value of nitrites, approximately +700 mV. In contrast, here we show that modified CFE can monitor NO at oxidation potentials different than that of nitrites, i.e. +550 mV. Indeed, at +550 mV a significant increase of amperometric current levels was obtained when NO but not nitrites, were added to a phosphate buffer saline solution (PBS). Differential pulse voltammetry (DPV) supports these findings as two oxidation peaks were obtained when examining air preserved NO; peak 1 at +550 mV and peak 2 at +700 mV, respectively. In contrast, only peak 2 was monitored when nitrites or a solution of NO oxidised in air was added to PBS. Biological support to these in vitro data comes from the observation that the relaxation of an adrenaline-contracted aortic ring produced via addition of NO is concomitant with peak 1 at +550 mV. The relaxation is almost completed before the appearance of peak 2 at +700 mV. Furthermore, in vivo experiments performed in the striatum of rats show that the amperometric signal monitored at +550 mV is responsive to glutamatergic stimulation or inhibition of NO synthase.
Collapse
Affiliation(s)
- F Crespi
- Department of Biology, GlaxoWellcome S.p.A., Medicine Research Centre, via A. Fleming 4, 37135, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR. Measurement of Nitric Oxide and Brain Tissue Oxygen Tension in Patients after Severe Subarachnoid Hemorrhage. Neurosurgery 2001. [DOI: 10.1227/00006123-200107000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR. Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurgery 2001; 49:33-8; discussion 38-40. [PMID: 11440457 DOI: 10.1097/00006123-200107000-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Nitric oxide (NO), one of the most powerful endogenous vasodilators, is thought to play a major role in the development of delayed vasospasm in patients with subarachnoid hemorrhage (SAH). However, the role of the production of cerebral NO in patients with SAH is not known. In other SAH studies, NO metabolites such as nitrite and nitrate have been demonstrated to be decreased in cerebrospinal fluid and in plasma. METHODS In this study, a microdialysis probe was used, along with a multiparameter sensor, to measure NO metabolites, brain tissue oxygen tension, brain tissue carbon dioxide tension, and pH in the cortex of patients with severe SAH who were at risk for developing secondary brain damage and vasospasm. NO metabolites, glucose, and lactate were analyzed in the dialysates to determine the time course of NO metabolite changes and to test the interrelationship between the analytes and clinical variables. RESULTS Brain tissue oxygen tension was strongly correlated to dialysate nitrate and nitrite (r2 = 0.326; P < 0.001); however, no correlation was noted between brain tissue oxygen tension and NO metabolites in cerebrospinal fluid (r2 = 0.018; P = 0.734). No significant correlation between NO production, brain tissue carbon dioxide tension, and dialysate glucose and lactate was observed. CONCLUSION Cerebral ischemia and compromised substrate delivery are often responsible for high morbidity rates and poor outcomes after SAH. The relationship between brain tissue oxygen and cerebral NO metabolites that we demonstrate suggests that substrate delivery and NO are linked in the pathophysiology of vasospasm after SAH.
Collapse
Affiliation(s)
- A Khaldi
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0631, USA
| | | | | | | | | |
Collapse
|
37
|
Matsuo I, Hirooka Y, Hironaga K, Eshima K, Shigematsu H, Shihara M, Sakai K, Takeshita A. Glutamate release via NO production evoked by NMDA in the NTS enhances hypotension and bradycardia in vivo. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1285-91. [PMID: 11294745 DOI: 10.1152/ajpregu.2001.280.5.r1285] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) in the nucleus tractus solitarii (NTS) plays an important role in regulating sympathetic nerve activity. The aims of this study were to determine whether the activation of N-methyl-D-aspartate (NMDA) receptors in the NTS facilitates the release of L-glutamate (Glu) via NO production, and, if so, to determine whether this mechanism is involved in the depressor and bradycardic responses evoked by NMDA. We measured the production of NO in the NTS as NO2- and NO3- (NO(x)) or Glu levels by in vivo microdialysis before, during, and after infusion of NMDA in anesthetized rats. We also examined effects of N(omega)-nitro-L-arginine methyl ester (L-NAME) on the changes in these levels. NMDA elicited depressor and bradycardic responses and increased the levels of NO(x) and Glu. L-NAME abolished the increases in the levels of NO(x) and Glu and attenuated cardiovascular responses evoked by NMDA. These results suggest that NMDA receptor activation in the NTS induces Glu release through NO synthesis and that Glu released via NO enhances depressor and bradycardic responses.
Collapse
Affiliation(s)
- I Matsuo
- Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yasuda H, Fujii M, Fujisawa H, Ito H, Suzuki M. Changes in nitric oxide synthesis and epileptic activity in the contralateral hippocampus of rats following intrahippocampal kainate injection. Epilepsia 2001; 42:13-20. [PMID: 11207780 DOI: 10.1046/j.1528-1157.2001.083032.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the effects of nitric oxide (NO) on seizure activity observed in brain areas that are remote from a primary epileptic focus. METHODS Following an injection of kainate (concentration 1 mg/ml, volume 1 microl) in the rat hippocampus, we measured NO synthesis in the contralateral hippocampus and epileptic activity by electroencephalogram (EEG). The NO end products, nitrite and nitrate, were measured by in vivo microdialysis combined with an automated NO end-product analyzer and then used as indices of NO synthesis. We also assessed the effect of a specific inhibitor of neuronal NO synthase (NOS) on both the epileptic activity and NO synthesis in the contralateral hippocampus. For this assessment, we administered 7-nitroindazole (7-NI) (50 mg/kg) intraperitoneally 30 min before the kainate injection. RESULTS Epileptic discharges in the contralateral hippocampus were frequently observed 90 min after unilateral hippocampus kainate injection. The duration of these discharges gradually increased until 240 min after the kainate injection. The NO end-product levels increased immediately after kainate injection and continued to increase gradually throughout the experiments, to a maximum of 213% of the base level. This elevation of NO end products was followed by epileptic discharges. Both the seizure activity and the elevation of contralateral hippocampus NO end-product levels were markedly attenuated in the animals that received 7-NI. CONCLUSIONS The results suggest that remote seizure activity caused by the transneuronal spread of kainate-induced discharges may be related to NO derived from neuronal NOS.
Collapse
Affiliation(s)
- H Yasuda
- Department of Neurosurgery, Yamaguchi University School of Medicine 1144, Kogushi Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
Nitric oxide (NO) has been postulated to act as an activity-dependent retrograde signal that can mediate multiple aspects of synaptic plasticity during development. In the visual system, a role for NO in activity-dependent structural modification of presynaptic arbors has been proposed based on NO's ability to prune inappropriate projections and segregate axon terminals. However, evidence demonstrating that altered NO signaling does not perturb ocular dominance map formation leaves unsettled the role of NO during the in vivo refinement of visual connections. To determine whether NO modulates the structural remodeling of individual presynaptic terminal arbors in vivo we have: 1. Used NADPH-diaphorase histochemistry to determine the onset of NO synthase (NOS) expression in the Xenopus visual system. 2. Used in vivo time-lapse imaging to examine the role of NO during retinal ganglion cell (RGC) axon arborization. We show that NOS expression in the target optic tectum is developmentally regulated and localized to neurons that reside in close proximity to arborizing RGC axons. Moreover, we demonstrate that perturbations in tectal NO levels rapidly and significantly alter the dynamic branching of RGC arbors in vivo. Tectal injection of NO donors increased the addition of new branches, but not their stabilization in the long term. Tectal injection of NOS inhibitors increased the dynamic remodeling of axonal arbors by increasing branch addition and elimination and by lengthening pre-existing branches. Thus, these results indicate that altering NO signaling significantly modifies axon branch dynamics in a manner similar to altering neuronal activity levels (Cohen-Cory, 1999). Consequently, our results support a role for NO during the dynamic remodeling of axon arbors in vivo, and suggest that NO functions as an activity-dependent retrograde signal during the refinement of visual connections.
Collapse
Affiliation(s)
- J Cogen
- Mental Retardation Research Center, Department of Psychiatry, University of California, 760 Westwood Plaza, Los Angeles, California 90095, USA
| | | |
Collapse
|
40
|
Liu D, Ling X, Wen J, Liu J. The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein. J Neurochem 2000; 75:2144-54. [PMID: 11032904 DOI: 10.1046/j.1471-4159.2000.0752144.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration.
Collapse
Affiliation(s)
- D Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555-0653, USA.
| | | | | | | |
Collapse
|
41
|
Rudolph JG, Lemasters JJ, Crews FT. Effects of NMDA and ferrous sulfate on oxidation and cell death in primary neuronal cultures. Neurochem Int 2000; 37:497-507. [PMID: 10871701 DOI: 10.1016/s0197-0186(00)00053-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excessive oxidative radical production has been implicated in a variety of neurodegerative processes including NMDA (N-methyl-D-aspartate) mediated excitotoxicity. To determine the relationship of oxidation to NMDA-receptor mediated neuronal death, we exposed rat primary cortical neuronal cultures to ferrous sulfate and the fluorescent dyes dichlorofluorescin diacetate (H(2)DCF) and propidium iodide (PI) to monitor reactive oxygen species (ROS) and cell death, respectively in the same cultures. Ferrous sulfate (FeSO(4)) caused a dose-dependent increase in cellular oxidation with an ED(50) of approximately 136 microM. Levels of oxidation increased over time reaching maximum levels between 15 and 25 min. Ferrous sulfate (ED(50) approximately 241 microM) treatment for 25 min caused a delayed and progressive neuronal death that was comparable to NMDA (100 microM, 25 min) delayed neuronal death. NMDA (100 microM, 25 min) alone did not result in measurable increases of DCF fluorescence. However, when combined with 40 microM FeSO(4), NMDA dose-dependently increased H(2)DCF fluorescence. Despite the increase in DCF oxidation, combinations of FeSO(4) with NMDA did not synergize or accelerate NMDA-receptor mediated or glutamate-mediated excitotoxicity. Although excessive amounts FeSO(4) induced oxidation can cause delayed neuronal death, these findings suggest that oxidative stress is not the key factor in triggering the NMDA mediated excitotoxic cascade.
Collapse
Affiliation(s)
- J G Rudolph
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
42
|
Nakaki T, Mishima A, Suzuki E, Shintani F, Fujii T. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum. Neurosci Lett 2000; 290:209-12. [PMID: 10963900 DOI: 10.1016/s0304-3940(00)01363-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.
Collapse
Affiliation(s)
- T Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, 173-8605, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
43
|
Yamamoto I, Fujimura M, Kihara N, Kumano K, Yamada T, Yamamoto H, Fujimiya M. Nitric oxide formation in the dog sphincter of Oddi from nitric oxide donors as measured with in vivo micro-dialysis. Aliment Pharmacol Ther 2000; 14:1095-101. [PMID: 10930906 DOI: 10.1046/j.1365-2036.2000.00811.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Nitric oxide (NO) is known to play an important role in neurally mediated relaxation of the sphincter of Oddi. AIM We investigated whether NO donors, such as nitroglycerin or zwitterionic polyamine/NO, applied into the common bile duct or intravenously, may induce the relaxation of the sphincter of Oddi by producing NO in the anaesthetized dog. METHODS NO production in the sphincter of Oddi was measured by detecting NO oxidation products (NO2- and NO3-) using micro-dialysis methods. RESULTS Zwitterionic polyamine/NO and nitroglycerin applied into the common bile duct induced a marked increase in NO2- but not NO3-, in the sphincter of Oddi. Intravenous infusion of zwitterionic polyamine/NO and nitroglycerin induced little or no increase in NO2- formation. Nitroglycerin infused into either the common bile duct or intravenously administered produced relaxation of the sphincter of Oddi, but zwitterionic polyamine/NO had no effect on the sphincter of Oddi in spite of the increase in NO2- levels. CONCLUSIONS Locally or systemically applied NO donors induce relaxation of the sphincter of Oddi by producing NO, although their mode of action differs in different analogues.
Collapse
Affiliation(s)
- I Yamamoto
- Department of Second Surgery, Shiga University of Medical Science, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Crespi F, Lazzarini C, Andreoli M, Vecchiato E. Voltammetric and functional evidence that N-methyl-D-aspartate and substance P mediate rat vascular relaxation via nitrogen monoxide release. Neurosci Lett 2000; 287:219-22. [PMID: 10863034 DOI: 10.1016/s0304-3940(00)01174-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is known that substance P acts as a vasodilator via activation of the enzyme nitrogen monoxide synthase (NOS) in endothelial tissue and it is suggested that N-methyl-D-aspartate (NMDA) could stimulate nitrogen monoxide (NO) release within nervous tissue. However, the data reported concern NO metabolites (nitrites, nitrates), while there is no clear evidence to date of the action of the latter compound within the aortic tissue. In this study, amperometry with specifically prepared carbon fiber electrodes has been applied to examine the effect of NMDA or substance P upon NO release. In particular, the data obtained confirm that NMDA can stimulate NO release in vivo, in the striatum of anaesthetized rats, and that substance P can stimulate NO release in rat aortic rings (ex vivo experiments). In addition, they indicate that NMDA also stimulates NO release in rat aortic rings. This original data has been confirmed by the observation of a vasorelaxant action of NMDA within noradrenaline precontracted aortic rings. Thus, these experiments provide the first direct evidence that NMDA can mediate vascular relaxation via NO release.
Collapse
Affiliation(s)
- F Crespi
- Department of Biology, Glaxo Wellcome S.p.A., Medicine Research Centre, Verona, Italy.
| | | | | | | |
Collapse
|
45
|
Wegener G, Volke V, Rosenberg R. Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 2000; 130:575-80. [PMID: 10821785 PMCID: PMC1572107 DOI: 10.1038/sj.bjp.0703349] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Revised: 02/29/2000] [Accepted: 03/06/2000] [Indexed: 11/09/2022] Open
Abstract
Nitric oxide (NO) modulates the levels of various neurotransmitters in the CNS. Here we determined whether the specific nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI), the non-selective inhibitor of guanylate cyclase (GC) and NOS, methylene blue (MB), the NO-precursor L-arginine (L-Arg), and the selective soluble GC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) affect extracellular levels of serotonin (5-HT), dopamine (DA), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) in the rat ventral hippocampus by using microdialysis in freely moving animals. Local perfusion of 7-NI (1 mM) and MB (1 mM) significantly increased extracellular level of 5-HT, whereas DA was increased by 7-NI only. Systemic administration of 7-NI (50 mg kg(-1)) and MB (30 mg kg(-1)) increased the extracellular levels of 5-HT and DA. Extracellular levels of 5-HIAA was not influenced by local or systemic MB or 7-NI. In contrast, extracellular level of HVA was decreased by systemic MB and retrodialyzed MB, but was not influenced by 7-NI. Retrodialysis of L-Arg (2 mM) decreased the levels of 5-HT, DA, 5-HIAA and HVA in the hippocampus. Systemic administration of L-Arg (250 mg kg(-1)) decreased the level of 5-HT, but failed to influence DA, 5-HIAA and HVA. Local perfusion of ODQ (400 microM) did not affect 5-HT overflow in the hippocampus. We conclude that NOS inhibitors increased extracellular levels of 5-HT and DA in the rat ventral hippocampus after local or systemic administration, whereas the NO precursor L-Arg had the opposite effect. Thus, endogenous NO may exert a negative control over the levels of 5-HT and DA in the hippocampus. However, this effect is probably not mediated by cyclic GMP.
Collapse
Affiliation(s)
- G Wegener
- Department of Biological Psychiatry, Institute for Basic Psychiatric Research, Skovagervej 2, DK-8240 Risskov, Denmark.
| | | | | |
Collapse
|
46
|
Mori K, Togashi H, Matsumoto M, Yoshioka M. Deficits in nitric oxide production after tetanic stimulation are related to the reduction of long-term potentiation in Schaffer-CA1 synapses in aged Fischer 344 rats. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:79-85. [PMID: 10759614 DOI: 10.1046/j.1365-201x.2000.00691.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated whether nitric oxide (NO) production after tetanic stimulation is involved in long-term potentiation (LTP) in Schaffer-CA1 synapses in both young adult and aged rats. The changes in both the population spike amplitude and NO metabolites, nitrite (NO2-) and nitrate (NO3-), in the CA1 region were simultaneously determined before and after tetanic stimulation. Increases in NOx (NO2- plus NO3-) levels in the CA1 region were observed after tetanic stimulation in young adult rats as well as increase in the population spike amplitude. In aged rats, LTP was significantly inhibited compared with that in young adult rats. No increase in NOx level after tetanic stimulation was observed in aged rats. These findings directly demonstrated that NO production might be involved in the process of LTP formation in Schaffer-CA1 synapses of the rat hippocampus, and that the deficiency of hippocampal NO production might be responsible for reduction of LTP formation in aged rats.
Collapse
Affiliation(s)
- K Mori
- Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
47
|
Ishizuka Y, Ishida Y, Jin Q, Kato K, Kunitake T, Mitsuyama Y, Kannan H. Differential profiles of nitric oxide and norepinephrine releases in the paraventricular nucleus region in response to mild footshock in rats. Brain Res 2000; 862:17-25. [PMID: 10799664 DOI: 10.1016/s0006-8993(00)02061-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine whether the application of mild intermittent footshock stress can cause changes in the nitric oxide (NO) and norepinephrine (NE) releases in the hypothalamic paraventricular nucleus (PVN) region and medial prefrontal cortex (mPFC). Extracellular levels of NO metabolites and NE in the PVN region and mPFC were determined using an in vivo brain microdialysis technique in conscious rats. In the PVN region, we demonstrated that perfusion of N-methyl-D-aspartate through a microdialysis probe resulted in a dose-dependent increase in NO metabolite levels, whereas intraperitoneal administration of N(G)-nitro-L-arginine methyl ester produced a dose-dependent reduction in the levels of NO metabolites. The levels of NO metabolites in the PVN region increased after intraperitoneal administration of interleukin-1beta in a dose-dependent manner, as we previously reported. This increase in NO metabolite levels was abolished 60 min after systemic administration of N(G)-nitro-L-arginine methyl ester compared to the vehicle-treated control group. Twenty minutes of intermittent footshock induced NE release but did not induce NO release in the PVN region. On the contrary, in the mPFC, 20 min of intermittent footshock induced both NO and NE releases. The present results reveal different patterns and time courses in NO and NE releases between the PVN region and the mPFC in response to mild intermittent footshock stress. These findings are likely to have helpful suggestions for our understanding of the hypothalamic-pituitary-adrenal axis and the limbic forebrain system response to different kinds of stress.
Collapse
Affiliation(s)
- Y Ishizuka
- Department of Psychiatry, Miyazaki Medical College, 5200 Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Gammie SC, Nelson RJ. Maternal and mating-induced aggression is associated with elevated citrulline immunoreactivity in the paraventricular nucleus in prairie voles. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000306)418:2<182::aid-cne5>3.0.co;2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Stabilization of growing retinal axons by the combined signaling of nitric oxide and brain-derived neurotrophic factor. J Neurosci 2000. [PMID: 10662836 DOI: 10.1523/jneurosci.20-04-01458.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pattern of axonal projections early in the development of the nervous system lacks the precision present in the adult. During a developmental process of refinement, mistargeted projections are eliminated while correct projections are retained. Previous studies suggest that during development nitric oxide (NO) is involved in the elimination of mistargeted retinal axons, whereas brain-derived neurotrophic factor (BDNF) may stabilize retinal axon arbors. It is unclear whether these neuromodulators interact. This study showed that NO induced growth cone collapse and retraction of developing retinal axons. This effect was not attributable to NO-induced neurotoxicity. BDNF protected growth cones and axons from the effects of NO. This effect was specific to BDNF, because neither nerve growth factor (NGF) nor neurotrophin-3 (NT-3) prevented NO-induced growth cone collapse and axon retraction. Exposure to both BDNF and NO, but not either factor alone, stabilized growth cones and axons. Stabilized axons exhibited minimal retraction or extension. This response appears to be a new axon "state" and not simply a partial amelioration of the effect of NO, because lower doses of BDNF or NO allowed axon extension. Furthermore, BDNF/NO-induced growth cone stabilization correlated with the appearance of a cytochalasin D-resistant population of actin filaments. BDNF protection from NO likely was mediated locally at the level of the growth cone, because growth cones or individual filopodia in contact with BDNF-coated beads were protected from NO-induced collapse. These findings suggest a cellular mechanism by which some axonal connections are stabilized and some are eliminated during development.
Collapse
|
50
|
Woodside B, Amir S. Chapter V Nitric oxide signaling in the hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 2000:147-176. [DOI: 10.1016/s0924-8196(00)80059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|