1
|
Xu Q, Liu F, Chen P, Jez JM, Krishnan HB. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int J Mol Sci 2017; 18:ijms18030526. [PMID: 28264526 PMCID: PMC5372542 DOI: 10.3390/ijms18030526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP). Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.
Collapse
Affiliation(s)
- Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | - Fengjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-Agricultural Research Service, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Jammulamadaka N, Burgula S, Medisetty R, Ilavazhagan G, Rao SLN, Singh SS. β-N-oxalyl-L-α,β-diaminopropionic acid regulates mitogen-activated protein kinase signaling by down-regulation of phosphatidylethanolamine-binding protein 1. J Neurochem 2011; 118:176-86. [PMID: 21554319 DOI: 10.1111/j.1471-4159.2011.07299.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
β-N-Oxalyl-L-α,β-diaminopropionic acid (l-ODAP) an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor agonist activates protein kinase C in white leghorn chick brain. The current study focuses on the protein kinase C downstream signaling targets associated with L-ODAP excitotoxicity in SK-N-MC human neuroblastoma cells and white leghorn male chick (Gallus domesticus) brain extracts. L-ODAP treatment in SK-N-MC cells (1.5 mM) and chicks (0.5 mg/g body weight) results in a decreased expression and increased phosphorylation of phosphatidylehthanolamine-binding protein 1 (PEBP1) up to 4 h which however, returns to normal by 8 h. D-ODAP, the non-toxic enantiomer however, did not affect PEBP1 levels in either chick brain or SK-N-MC cells. Decreased PEBP1 expression correlated with subsequent activation of Raf-1, MEK and ERK signaling components of the mitogen-activated protein kinase cascade and nuclear translocation of hypoxia inducible factor-1α (HIF-1α) in chick brain nuclear extracts and SK-N-MC cells. SK-N-MC cells over-expressing PEBP1 inhibited nuclear translocation of HIF-1α when treated with l-ODAP, indicating that down-regulation of PEBP1 is responsible for HIF-1α stabilization and nuclear localization. Excitotoxicity of L-ODAP may thus be the result of phosphorylation and down-regulation of PEBP1, a crucial signaling protein regulating diverse signaling cascades. L-ODAP induced convulsions and seizures in chicks could be the result of a hypoxic insult to brain.
Collapse
|
3
|
Enneking D. The nutritive value of grasspea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism. Food Chem Toxicol 2011; 49:694-709. [DOI: 10.1016/j.fct.2010.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 11/14/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022]
|
4
|
Sribnick EA, Del Re AM, Ray SK, Woodward JJ, Banik NL. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels. Brain Res 2009; 1276:159-70. [PMID: 19389388 DOI: 10.1016/j.brainres.2009.04.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/02/2009] [Accepted: 04/04/2009] [Indexed: 12/26/2022]
Abstract
Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauma models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca(2+). Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17beta-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17 alpha-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca(2+) and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca(2+) and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca(2+), cells were treated with several Ca(2+) entry inhibitors, but only the L-type Ca(2+) channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca(2+) channel agonist FPL 64176, which increased both cell death and intracellular free Ca(2+), and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca(2+) channels, inhibiting Ca(2+) influx as well as activation of the pro-apoptotic proteases calpain and caspase-3.
Collapse
Affiliation(s)
- Eric A Sribnick
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
5
|
Lyuh E, Kim HJ, Kim M, Lee JK, Park KS, Yoo KY, Lee KW, Ahn YO. Dose-specific or dose-dependent effect of growth hormone treatment on the proliferation and differentiation of cultured neuronal cells. Growth Horm IGF Res 2007; 17:315-322. [PMID: 17482859 DOI: 10.1016/j.ghir.2007.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 03/11/2007] [Accepted: 03/21/2007] [Indexed: 12/12/2022]
Abstract
OBJECTIVE GH controls the proliferation of cartilage, fibroblasts or the differentiation of adipose and muscle tissue. However, the effect of GH on neuronal cells remains unknown. The present study was conducted to determine the proliferative or differentiating effect of GH on the nervous system in vitro. DESIGN Neuronal hybrid cells (VSC4.1) were cultured with GH. The concentration ranged from 0.134 microg/ml up to 1.34 mg/ml. A cell confluency and MTT assay, cell cycle phase analysis with flow cytometry, extracellular receptor kinase (ERK) phosphorylation and mitogen activated protein kinase (MAPK) inhibitor (PD98050) assays were all performed to determine the effect on proliferation. Differentiation was evaluated by neurite outgrowth and neurofilament expression. Terminally differentiated neurons were stained by Hoechst 33342 for apoptotic nuclear fragmentation by degeneration. Poly-adenosyl ribose polymerase (PARP) expression and its cleavage products were evaluated. RESULTS Cells at concentrations between 0.134 microg/ml and 1.34 microg/ml of GH proliferated with ERK phosphorylation, which was attenuated by MAPK inhibitors. Proliferation decreased at concentrations higher than 13.4 microg/ml; however, neurite outgrowth was observed at these concentrations. Terminally differentiated cells underwent apoptosis and showed nuclear fragmentation by Hoechst 33342 staining. PARP expression was increased with caspase-3 dependent-cleaved fragment. CONCLUSIONS Our in vitro data demonstrate that GH exerts dual effects; proliferation with a specific GH dose window, or differentiation in a dose-dependent manner in cultured neuronal hybrid cells.
Collapse
Affiliation(s)
- Esther Lyuh
- Department of Preventive Medicine, Seoul National University, Esther Clinic, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Shinomol GK. Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified Khesari dhal. Neurotoxicology 2007; 28:798-806. [PMID: 17451808 DOI: 10.1016/j.neuro.2007.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/28/2022]
Abstract
Neurolathyrism is a neurodegenerative disease caused by the chronic consumption of Khesari dhal (Lathyrus sativus L). It is generally accepted that beta-N-oxalylamino-l-alanine (b-ODAP), a non-protein amino acid present in the seeds is the primary causative agent. Based on in vitro studies with beta-ODAP, both excitotoxic and oxidative stress mechanisms have been speculated to be responsible for its neurotoxic effects. However, occurrence and the involvement of oxidative stress mechanisms in experimental animals following Khesari dhal consumption in vivo is less well understood. Accordingly in the present study, we have addressed primarily two questions: (i) whether dietary intake of Khesari dhal (KD) causes oxidative impairment in specific regions of brain, such as cortex and cerebellum and (ii) if there is any significant reduction in the oxidative damage induction following consumption of detoxified Khesari dhal (DKD). Adult male mice were fed either normal, KD or DKD incorporated diet (30%) for a period of 4 or 12 weeks. Biochemical markers of oxidative stress, such as lipid peroxidation (LPO), generation of reactive oxygen species (ROS), activity of antioxidant enzymes, protein carbonyls in brain regions (cortex, cerebellum) were determined. Mice fed KD diet showed enhanced LPO levels and ROS generation in brain, while the levels of LPO and ROS were unaltered in DKD mice. Interim sampling (4 weeks) also showed a similar trend though the degree of oxidative damage was lower. Depletion of reduced GSH, significant alterations in the activity of various antioxidant enzymes and enhanced protein carbonyls in brain in KD fed mice suggested that a state of oxidative stress exists in vivo. Interestingly, no significant induction of oxidative damage was evident in the brain of mice fed DKD. However, altered cholinergic function was discernible among both treatment groups. KD consumption resulted in a marked reduction of brain AChE activity at both sampling times (cortex, 38-43%; cerebellum, 22-41%), while DKD consumption resulted in less robust reduction (cortex, 11-17%; cerebellum, 11-13%). Taken together, these data suggest that dietary KD has the propensity to induce marked oxidative damage in brain of male mice, while DKD failed to induce any significant degree of oxidative impairments. Based on these results, it is hypothesized that oxidative stress mechanisms may wholly or in part contribute towards the development of neuro-degeneration associated with human consumption of L. sativus.
Collapse
Affiliation(s)
- George K Shinomol
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
7
|
La Bella V, Valentino F, Piccoli T, Piccoli F. Expression and Developmental Regulation of the Cystine/Glutamate Exchanger (x c − ) in the Rat. Neurochem Res 2007; 32:1081-90. [PMID: 17401668 DOI: 10.1007/s11064-006-9277-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
The cystine/glutamate exchanger (antiporter x (c) (-) ) is a membrane transporter involved in the uptake of cystine, the rate-limiting amino acid in the synthesis of glutathione. Recent studies suggest that the antiporter plays a role in the slow oxidative excitotoxity and in the pathological effects of beta-N-oxalylamino-L: -alanine, the molecule responsible for neurolathyrism, a neurotoxic upper motor neuron disease. The mouse cystine/glutamate exchanger has been cloned and showed to be composed of two distinct proteins, one of which being a novel protein, named xCT, of 502 amino acids and 12 putative trans-membrane domains. We have generated and purified a polyclonal antibody to mouse xCT and studied its expression in rat brain and in different cultured cells (astrocytes, fibroblasts and neurons) using Western blot and immunocytochemical techniques. Expression of xCT was also studied in rat brain and muscle at different developmental stages. Parallel experiments were carried out with antibodies to the heavy chain of 4F2 surface antigen, the non-specific subunit of the antiporter x (c) (-) . xCT antibody detected in all cell and tissue extracts a specific band of about 40 kDa. Subcellular fractionation demonstrated that xCT is concentrated mainly in the microsomal-mitochondrial fraction, in accord with its structure as transmembrane protein. Immunocytochemical analysis showed a strong staining in all cells examined, included neurons. Furthermore, both xCT and the heavy chain of 4F2 surface antigen increased in the brain during development, reaching the highest expression in adulthood. The study of the expression and developmental profile of xCT represents a first step towards a better characterization of its biochemical properties and function, which in turn may help to understand the relative contribution of the x (c) (-) antiporter in the pathogenesis of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Vincenzo La Bella
- Department of Clinical Neurosciences, Laboratory of Neurochemistry, University of Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
8
|
Warren BA, Patel SA, Nunn PB, Bridges RJ. The Lathyrus excitotoxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid is a substrate of the L-cystine/L-glutamate exchanger system xc-. Toxicol Appl Pharmacol 2004; 200:83-92. [PMID: 15476861 DOI: 10.1016/j.taap.2004.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Beta-N-oxalyl-L-alpha-beta-diaminopropionic acid (beta-L-ODAP) is an unusual amino acid present in seeds of plants from the Lathyrus genus that is generally accepted as the causative agent underlying the motor neuron degeneration and spastic paraparesis in human neurolathyrism. Much of the neuropathology produced by beta-L-ODAP appears to be a direct consequence of its structural similarities to the excitatory neurotransmitter L-glutamate and its ability to induce excitotoxicity as an agonist of non-NMDA receptors. Its actions within the CNS are, however, not limited to non-NMDA receptors, raising the likely possibility that the anatomical and cellular specificity of the neuronal damage observed in neurolathyrism may result from the cumulative activity of beta-L-ODAP at multiple sites. Accumulating evidence suggests that system xc-, a transporter that mediates the exchange of L-cystine and L-glutamate, is one such site. In the present work, two distinct approaches were used to define the interactions of beta-L-ODAP with system xc-: Traditional radiolabel-uptake assays were employed to quantify inhibitory activity, while fluorometrically coupled assays that follow the exchange-induced efflux of L-glutamate were used to assess substrate activity. In addition to confirming that beta-L-ODAP is an effective competitive inhibitor of system xc-, we report that the compound exhibits a substrate activity comparable to that of the endogenous substrate L-cystine. The ability of system xc- to transport and accumulate beta-L-ODAP identifies additional variables that could influence its toxicity within the CNS, including the ability to limit its access to EAA receptors by clearing the excitotoxin from the extracellular synaptic environment, as well as serving as a point of entry through which beta-L-ODAP could have increased access to intracellular targets.
Collapse
Affiliation(s)
- Brady A Warren
- COBRE Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula 59812, USA
| | | | | | | |
Collapse
|
9
|
Kotake Y, Ohta S, Kanazawa I, Sakurai M. Neurotoxicity of an endogenous brain amine, 1-benzyl-1,2,3,4-tetrahydroisoquinoline, in organotypic slice co-culture of mesencephalon and striatum. Neuroscience 2003; 117:63-70. [PMID: 12605893 DOI: 10.1016/s0306-4522(02)00789-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organotypic slice co-culture of the ventromedial portion of the mesencephalon and striatum was used to evaluate the neurotoxicity of 1-benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous brain amine related to Parkinson's disease. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline is specifically increased in the cerebrospinal fluid of patients with Parkinson's disease and induces parkinsonian features in the monkey and mouse. Here, it decreased the dopamine content of the cultured mesencephalon in both dose- (10-100 microM) and time- (24 h to 7 days) dependent manners. This result suggests that the neurotoxicity of 1-benzyl-1,2,3,4-tetrahydroisoquinoline is correlated with the overall exposure (concentration multiplied by exposure time). Culture with 100 microM 1-benzyl-1,2,3,4-tetrahydroisoquinoline for 24 h irreversibly reduced the dopamine content. Furthermore, culture with 100 microM 1-benzyl-1,2,3,4-tetrahydroisoquinoline for 10 days caused morphological changes, including cell body shrinkage and distortion of dendritic morphology, in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells by half. The increase in lactate dehydrogenase activity in the media produced by 1-benzyl-1,2,3,4-tetrahydroisoquinoline was significant in culture of the mesencephalon alone or its co-culture with striatum, but not in cultures of other brain regions. We suggest that 1-benzyl-1,2,3,4-tetrahydroisoquinoline is toxic to tyrosine hydroxylase-positive cells in the ventral mesencephalon and that it is correlated with the integral of the concentration by time of exposure. Thus a low concentration of 1-benzyl-1,2,3,4-tetrahydroisoquinoline may first induce a decrease in the dopamine content then shrinkage of the cell body, followed by the slow death of dopaminergic neurons over a long period. This is the first report that indicates 1-benzyl-1,2,3,4-tetrahydroisoquinoline exerts neurotoxicity at the cellular level, and reveals in part the character of its neurotoxicity.
Collapse
Affiliation(s)
- Y Kotake
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Japan
| | | | | | | |
Collapse
|
10
|
Getahun H, Lambein F, Van der Stuyft P. ABO blood groups, grass pea preparation, and neurolathyrism in Ethiopia. Trans R Soc Trop Med Hyg 2002; 96:700-3. [PMID: 12625154 DOI: 10.1016/s0035-9203(02)90355-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An exploratory study was conducted in the rural Estie district of Ethiopia in 1997 to identify the role of ABO blood group, rhesus factor, and type of grass pea (Lathyrus sativus) diet in the susceptibility to neurolathyrism. Five-hundred study subjects (250 cases and 250 controls) were examined and interviewed, and had their ABO and rhesus blood groups determined. The majority (86%) of the cases were males. Blood group O was the most common in the patients and controls followed by groups A, B, and AB. The vast majority of the study subjects were rhesus-positive. The gravy (Shiro) grass pea preparation was consumed by 91.6% of the study population, boiled (Nifiro) by 86%, and roasted (Kollo) by 56.4%. Almost half (48%) of the cases had consumed grass pea for > 4 months compared to 8% of controls (P < 0.001). There was a significant association between the risk for neurolathyrism and the consumption of boiled (adjusted odds ratio [AOR] = 98.4) and roasted (AOR = 55.62) forms of grass pea. There was no risk of paralysis associated with consumption of the gravy form of grass pea (AOR = 0.40, 95% confidence interval 0.1-2.0). Blood group O remained significantly associated with the disease after adjusting for age, type of grass pea preparation consumed, and duration of consumption (AOR = 2.90).
Collapse
|
11
|
Amba A, Seth K, Ali M, Das M, Agarwal AK, Khanna SK, Seth PK. Comparative effect of dietary administration of Lathyrus sativus pulse on behaviour, neurotransmitter receptors and membrane permeability in rats and guinea pigs. J Appl Toxicol 2002; 22:415-21. [PMID: 12424745 DOI: 10.1002/jat.878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurolathyrism, an upper motor neuron disease, has been thought to be caused by long-term dietary consumption of lathyrus pulse, which contains the toxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid. Earlier behavioural studies employing oral feeding of lathyrus pulse to animals has been conducted without evaluating the biochemical toxicity potential. In the present investigation the effect of dietary feeding of 10%, 50% and 80% lathyrus pulse to rats and guinea pigs for 3 months on neurobehavioural parameters, including locomotor activity, inclined plain test and neurotoxicological parameters such as neurotransmitter receptor binding, Ca(2+) influx and membrane fluidity, was investigated. Exposure of 50% low and high toxin lathyrus to rats did not cause any significant change in locomotor activity, whereas guinea pigs at the same dosage regimen of high toxin lathyrus showed significant lowering of inclined plain test scores. Furthermore, studies of neuroreceptor binding in rats fed 50% low and high toxin lathyrus showed significant changes in glutamate, dopamine and muscarinic receptors, whereas the benzodiazepine receptor elicited no change. Guinea pigs, on the other hand, fed 50% and 80% lathyrus in the diet showed significant changes in glutamate, dopamine, muscarinic and benzodiazepine receptors. Interestingly, significant elevation in intracellular calcium with a concomitant increase in membrane fluidity was observed in rats (50% low and high toxin) and guinea pigs (50% and 80%) fed a lathyrus diet. These results indicate that although both species (rats and guinea pigs) are susceptible to neurochemical changes on exposure to lathyrus, locomotor changes are only noticed in guinea pigs. Thus, guinea pigs may be more prone to lathyrus toxicity and may serve as a sensitive animal model compared with rats.
Collapse
MESH Headings
- Administration, Oral
- Amino Acids, Diamino/analysis
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/ultrastructure
- Calcium/metabolism
- Diet
- Guinea Pigs
- In Vitro Techniques
- Lathyrus/chemistry
- Lathyrus/toxicity
- Membrane Fluidity/drug effects
- Neurotoxins/analysis
- Radioligand Assay
- Rats
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Archana Amba
- Food Toxicology Laboratory, Industrial Toxicology Research Centre, M.G. Marg, Post Box 80, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Mabry TJ. Selected topics from forty years of natural products research: betalains to flavonoids, antiviral proteins, and neurotoxic nonprotein amino acids. JOURNAL OF NATURAL PRODUCTS 2001; 64:1596-604. [PMID: 11754626 DOI: 10.1021/np010524s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The elucidation by NMR and chemical methods of the unique structure of betanidin, the aglycon of the red-violet beet pigment betanin, forty years ago at the University of Zürich, Switzerland, was the beginning of my plant chemistry research program. Many of the same chemical and spectral techniques developed in Zürich have been used at The University of Texas at Austin for the structure analysis of members of many other classes of natural products including especially flavonoids, terpenoids, and alkaloids. Investigations at UT-Austin have concerned many topics such as biochemical and molecular systematics, biosynthetic pathways, structure-activity relationships, and the medicinal importance of natural products and included studies of antiviral proteins in the genus Phytolacca and neurotoxic nonprotein amino acids from cycads and other sources. Following the betalain story and an account of the early development of my UT-Austin biochemical systematic program, the Phytolacca and neurotoxin investigations are discussed herein.
Collapse
Affiliation(s)
- T J Mabry
- Phytochemical Laboratories, Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
13
|
La Bella V, Piccoli F. Differential effect of beta-N-oxalylamino-L-alanine, the Lathyrus sativus neurotoxin, and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on the excitatory amino acid and taurine levels in the brain of freely moving rats. Neurochem Int 2000; 36:523-30. [PMID: 10762089 DOI: 10.1016/s0197-0186(99)00152-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We studied the effect of beta-oxalylamino-L-alanine, a glutamate analog present in Lathyrus sativus seeds and implicated in the etiopathogenesis of neurolathyrism, and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on the extracellular levels of aspartate, glutamate and taurine in the primary motor cortex of freely moving rats. We found that while both neurotoxins increase the level of aspartate and glutamate, only (+/-)-alpha(-amino-3-hydroxy-5-methylisoxazole-4-propionate is able to modulate the level of taurine. GYKI-52466, a non-competitive non-NMDA antagonist, inhibited beta-oxalylamino-L-alanine-induced increase of aspartate, but not that of glutamate. Conversely, this antagonist proved to be very efficient in blocking the stimulating effect of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on all three amino acids. We suggest that beta-oxalylamino-L-alanine increases the level of glutamate in vivo by a mechanism not connected to its effect on the non-NMDA receptors, which might involve the inhibition of glutamate transport. This would allow the excitatory neurotransmitter to reach a concentration sufficient to stimulate the non-NMDA receptors, which in their turn mediate the specific release of aspartate. Although the role of aspartate as a neurotransmitter is still under discussion, it might indeed amplify the excitotoxic cascade through its action on NMDA receptors. We speculate that this sequence of events might represent an important step in the molecular cascade leading to the appearance of the selective motoneuron degeneration in neurolathyrism.
Collapse
Affiliation(s)
- V La Bella
- Laboratory of Neurochemistry, The Institute of Neuropsychiatry, University of Palermo, Italy
| | | |
Collapse
|
14
|
Li Y, Maher P, Schubert D. Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc Natl Acad Sci U S A 1998; 95:7748-53. [PMID: 9636222 PMCID: PMC22746 DOI: 10.1073/pnas.95.13.7748] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a necessary intermediate in transducing apoptotic signals for tumor necrosis factor and Fas/Apo-1 ligands in nonneuronal cells. The data presented here show that PC-PLC also is required in oxidative glutamate-induced programmed cell death of both immature cortical neurons and a hippocampal nerve cell line, HT22. In oxidative glutamate toxicity, which is distinct from excitotoxicity, glutamate interferes with cystine uptake by blocking the cystine/glutamate antiporter, indirectly causing a depletion of intracellular glutathione. A PC-PLC inhibitor blocks oxidative glutamate toxicity, and exogenous PC-PLC potentiates glutamate toxicity. The inhibition of PC-PLC uncouples the cystine uptake from glutamate inhibition, allowing the maintenance of glutathione synthesis and cell viability. These data suggest that PC-PLC modulates neuronal cell death through a mechanism that is distinct from that involved in nonneuronal apoptosis.
Collapse
Affiliation(s)
- Y Li
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
15
|
Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 1998; 54:369-415. [PMID: 9522394 DOI: 10.1016/s0301-0082(97)00055-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Forty years of research into the function of L-glutamic acid as a neurotransmitter in the vertebrate central nervous system (CNS) have uncovered a tremendous complexity in the actions of this excitatory neurotransmitter and an equally great complexity in the molecular structures of the receptors activated by L-glutamate. L-Glutamate is the most widespread excitatory transmitter system in the vertebrate CNS and in addition to its actions as a synaptic transmitter it produces long-lasting changes in neuronal excitability, synaptic structure and function, neuronal migration during development, and neuronal viability. These effects are produced through the activation of two general classes of receptors, those that form ion channels or "ionotropic" and those that are linked to G-proteins or "metabotropic". The pharmacological and physiological characterization of these various forms over the past two decades has led to the definition of three forms of ionotropic receptors, the kainate (KA), AMPA, and NMDA receptors, and three groups of metabotropic receptors. Twenty-seven genes are now identified for specific subunits of these receptors and another five proteins are likely to function as receptor subunits or receptor associated proteins. The regulation of expression of these protein subunits, their localization in neuronal and glial membranes, and their role in determining the physiological properties of glutamate receptors is a fertile field of current investigations into the cell and molecular biology of these receptors. Both ionotropic and metabotropic receptors are linked to multiple intracellular messengers, such as Ca2+, cyclic AMP, reactive oxygen species, and initiate multiple signaling cascades that determine neuronal growth, differentiation and survival. These cascades of complex molecular events are presented in this review.
Collapse
Affiliation(s)
- E K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66047, USA
| |
Collapse
|