1
|
Alevizopoulos K, Dimas K, Papadopoulou N, Schmidt EM, Tsapara A, Alkahtani S, Honisch S, Prousis KC, Alarifi S, Calogeropoulou T, Lang F, Stournaras C. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget 2017; 7:24415-28. [PMID: 27027435 PMCID: PMC5029711 DOI: 10.18632/oncotarget.8329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/06/2016] [Indexed: 12/31/2022] Open
Abstract
Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development.
Collapse
Affiliation(s)
| | - Konstantinos Dimas
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Natalia Papadopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Eva-Maria Schmidt
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Kyriakos C Prousis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece.,Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Lang F, Alevizopoulos K, Stournaras C. Targeting membrane androgen receptors in tumors. Expert Opin Ther Targets 2013; 17:951-63. [PMID: 23746222 DOI: 10.1517/14728222.2013.806491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last decade androgen actions that are originated from non-genomic, rapid signaling have been described in a large number of cell models and tissues. These effects are initiated through the stimulation of membrane androgen-binding sites or receptors (mAR). Although the molecular identity of mARs remains elusive, their activation is known to trigger multiple non-genomic signaling cascades and to regulate numerous cell responses. In recent years specific interest is being paid to the role of mARs in tumors. Specifically, it was demonstrated that mAR activation by non-permeable testosterone conjugates induced potent anti-tumorigenic responses in prostate, breast, colon and glial tumors. In addition, in vivo animal studies further emphasized the potential clinical importance of these receptors. AREAS COVERED This review will summarize the current knowledge on the mAR-induced non-genomic, rapid androgen actions. It will focus on the molecular signaling pathways governed by mAR activation, discuss latest attempts to elucidate the molecular identity of mAR, address the plethora of cell responses initiated by mAR and evaluate the potential role of mAR and mAR-specific signaling as possible therapeutic targets in tumors. EXPERT OPINION mAR and mAR-induced specific signaling may represent novel therapeutic targets in tumors through the development of specific testosterone analogs.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology, Gmelin Str. 5, Tübingen, 72076, Germany
| | | | | |
Collapse
|
3
|
Abstract
The biological activity of androgens is thought to occur predominantly through binding to intracellular androgen-receptors, a member of the nuclear receptor family, that interact with specific nucleotide sequences to alter gene expression. This genomic-androgen effect typically takes at least more than half an hour. In contrast, the rapid or non-genomic actions of androgens are manifested within in seconds to few minutes. This rapid effect of androgens are manifold, ranging from activation of G-protein coupled membrane androgen-receptors or sex hormone-binding globulin receptors, stimulation of different protein kinases, to direct modulation of voltage- and ligand gated ion-channels and transporters. The physiological relevance of these non-genomic androgen actions has not yet been determined in detail. However, it may contribute to modulate several second messenger systems or transcription factors, which suggests a cross-talk between the fast non-genomic and the slow genomic pathway of androgens. This review will focus on the rapid effects of androgens on cell surface and cytoplasmic level.
Collapse
Affiliation(s)
- Guido Michels
- Department of Internal Medicine III and Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | | |
Collapse
|
4
|
Secades L, Cortina R, Velasco L, Bordallo J, Hidalgo A, Sánchez M. Interaction of Androgens with Cardiotonic Drugs in Isolated Left Atrium of Rat. Pharmacology 2004; 70:118-22. [PMID: 14752231 DOI: 10.1159/000074974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 07/29/2003] [Indexed: 11/19/2022]
Abstract
Pharmacological concentrations of androgens are known to elicit a rapid positive inotropism in isolated left atrium of male rats. Upon short-term exposure to androgens, an increase in intracellular cAMP levels has been observed, though delayed with respect to the time course of contraction, suggesting that other mechanisms may participate in initiating the contraction. Therefore, the interaction of positive inotropism elicited by ouabain, an inhibitor of Na(+)-K(+)-ATPase, and androgens was studied in isolated left atrium of rat. Androgens antagonized ouabain-elicited positive inotropism and increased the basal tone. Vanadate, an inhibitor of the Ca(2+) pump, produced a similar effect as androgens on ouabain-elicited positive inotropism. Therefore, androgens might interact with the Ca(2+) pump and this may explain the increase in basal tone. The conjugation of 5 alpha-dihydrotestosterone with bovine serum albumin produced the same effect, suggesting an extracellular interaction of androgens inhibiting the Na(+)-K(+)-ATPase that could increase intracellular Ca(2+) via the Na(+)-Ca(2+) exchange.
Collapse
Affiliation(s)
- Lorena Secades
- Farmacología, Departamento de Medicina, Facultad de Medicina, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Mobasheri A, Fox R, Evans I, Cullingham F, Martín-Vasallo P, Foster CS. Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy. Cancer Cell Int 2003; 3:8. [PMID: 12848899 PMCID: PMC194866 DOI: 10.1186/1475-2867-3-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 06/13/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: An important physiological function of the normal prostate gland is the synthesis and secretion of a citrate rich prostatic fluid. In prostate cancer, citrate production levels are reduced as a result of altered cellular metabolism and bioenergetics. Na, K-ATPase is essential for citrate production since the inward Na+ gradients it generates are utilized for the Na+ dependent uptake of aspartate, a major substrate for citrate synthesis. The objective of this study was to compare the expression of previously identified Na, K-ATPase isoforms in normal canine prostate, benign prostatic hyperplasia (BPH) and prostatic adenocarcinoma (PCa) using immunohistochemistry in order to determine whether reduced citrate levels in PCa are also accompanied by changes in Na, K-ATPase expression. RESULTS: Expression of Na, K-ATPase alpha1 and beta1 isoforms was observed in the lateral and basolateral plasma membrane domains of prostatic epithelial cells in normal and BPH prostates. Canine kidney was used as positive control for expression of Na, K-ATPase alpha1 and gamma isoforms. The alpha1 isoform was detected in abundance in prostatic epithelial cells but there was no evidence of alpha2, alpha3 or gamma subunit expression. In advanced PCa, Na, K-ATPase alpha1 isoform expression was significantly lower compared to normal and BPH glands. The abundant basolateral immunostaining observed in normal and BPH tissue was significantly attenuated in PCa. CONCLUSION: The loss of epithelial structure and function and the transformation of normal epithelial cells to malignant cells in the canine prostate have important implications for cellular metabolism and are accompanied by a down regulation of Na, K-ATPase.
Collapse
Affiliation(s)
- Ali Mobasheri
- Molecular Pathogenesis Research Group, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | - Richard Fox
- Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | - Iain Evans
- Molecular Pathogenesis Research Group, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | - Fay Cullingham
- Molecular Pathogenesis Research Group, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | - Pablo Martín-Vasallo
- Labratorio de Biología del Desarollo, Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, 38201 La Laguna, Tenerife, Spain
| | - Christopher S Foster
- Department of Cellular and Molecular Pathology, Faculty of Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| |
Collapse
|
6
|
Mycielska ME, Szatkowski M, Djamgoz MBA. Ionic and pharmacologic characteristics of epithelial cells in a semi-intact preparation of the rat ventral prostate gland. Prostate 2003; 54:156-67. [PMID: 12497588 DOI: 10.1002/pros.10156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The essential ionic and pharmacologic characteristics of epithelial cells within the ducts of the prostate gland are not well known. METHODS Experiments were carried out on segments of ventral prostate glands from adult male rats. By using sharp microelectrodes, intracellular epithelial cell and transepithelial (lumen) potentials were recorded in response to ionic substitution and application of ion channel blockers, hormones, and other pharmacologic agents related to prostatic function. RESULTS Membrane permeabilities to K(+), Na(+), and Cl(-) were found to account for approximately 43% of the resting membrane potential, whereas some 39% was likely to be metabolic in origin. The membrane potential also responded to adrenaline, acetylcholine, insulin, prolactin, testosterone, nerve growth factor, and nitric oxide. The lumen potential was found to be particularly sensitive to citrate, prolactin, and testosterone. CONCLUSION It was concluded that the basal membrane potential of prostatic epithelial cells is associated with a relatively high Na(+):K(+) permeability ratio and metabolic dependence. The hormonal and pharmacologic sensitivity observed is consistent with the functional characteristics of the prostate gland.
Collapse
Affiliation(s)
- Maria E Mycielska
- Department of Biological Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | |
Collapse
|
7
|
Abstract
The adrenal cortex elaborates two major groups of steroids that have been arbitrarily classified as glucocorticoids and mineralocorticoids, despite the fact that carbohydrate metabolism is intimately linked to mineral balance in mammals. In fact, glucocorticoids assured both of these functions in all living cells, animal and photosynthetic, prior to the appearance of aldosterone in teleosts at the dawn of terrestrial colonization. The evolutionary drive for a hormone specifically designed for hydromineral regulation led to zonation for the conversion of 18-hydroxycorticosterone into aldosterone through the catalytic action of a synthase in the secluded compartment of the adrenal zona glomerulosa. Corticoid hormones exert their physiological action by binding to receptors that belong to a transcription factor superfamily, which also includes some of the proteins regulating steroid synthesis. Steroids stimulate sodium absorption by the activation and/or de novo synthesis of the ion-gated, amiloride-sensitive sodium channel in the apical membrane and that of the Na+/K+-ATPase in the basolateral membrane. Receptors, channels, and pumps apparently are linked to the cytoskeleton and are further regulated variously by methylation, phosphorylation, ubiquination, and glycosylation, suggesting a complex system of control at multiple checkpoints. Mutations in genes for many of these different proteins have been described and are known to cause clinical disease.
Collapse
Affiliation(s)
- M K Agarwal
- Centre National de la Recherche Scientifique, Paris, France.
| | | |
Collapse
|
8
|
Zakelj-Mavric M, Kastelic-Suhadolc T, Plemenitas A, Rizner TL, Belic I. Steroid hormone signalling system and fungi. Comp Biochem Physiol B Biochem Mol Biol 1995; 112:637-42. [PMID: 8590379 DOI: 10.1016/0305-0491(95)00113-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three components of the steroid hormone signalling system, 17 beta-hydroxysteroid dehydrogenase, androgen binding proteins and steroid hormone signalling molecule testosterone were determined in the filamentous fungus Cochliobolus lunatus for the first time in a fungus. Their possible role in C. lunatus is discussed in comparison with their role in mammalian steroid hormone signalling system. The results are in accordance with the hypothesis, that the elements of primordial signal transduction system should exist in present day eukaryotic microorganisms.
Collapse
Affiliation(s)
- M Zakelj-Mavric
- Institute of Biochemistry, Medical Faculty, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|