1
|
Miyakawa K, Matsunaga S, Yokoyama M, Nomaguchi M, Kimura Y, Nishi M, Kimura H, Sato H, Hirano H, Tamura T, Akari H, Miura T, Adachi A, Sawasaki T, Yamamoto N, Ryo A. PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nat Commun 2019; 10:1844. [PMID: 31015445 PMCID: PMC6479052 DOI: 10.1038/s41467-019-09867-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response. The accessory lentiviral protein X (Vpx) of the SIVsmm/mac and HIV-2 lineage targets the host-restriction factor SAMHD1 for proteasomal degradation. Here, the authors show that host PIM kinase-mediated phosphorylation of Vpx stabilizes its interaction with SAMHD1, suggesting PIM as potential antiviral targets.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirofumi Akari
- Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Tomoyuki Miura
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan.,Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | | | - Naoki Yamamoto
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan.
| |
Collapse
|
2
|
Kudoh A, Miyakawa K, Matsunaga S, Matsushima Y, Kosugi I, Kimura H, Hayakawa S, Sawasaki T, Ryo A. H11/HSPB8 Restricts HIV-2 Vpx to Restore the Anti-Viral Activity of SAMHD1. Front Microbiol 2016; 7:883. [PMID: 27379031 PMCID: PMC4904303 DOI: 10.3389/fmicb.2016.00883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Virus-host interactions play vital roles in viral replication and virus-induced pathogenesis. Viruses rely entirely upon host cells to reproduce progeny viruses; however, host factors positively or negatively regulate virus replication by interacting with viral proteins. The elucidation of virus-host protein interaction not only provides a better understanding of the molecular mechanisms by which host cells combat viral infections, but also facilitates the development of new anti-viral therapeutics. Identification of relevant host factors requires techniques that enable comprehensive characterization of virus-host protein interactions. In this study, we developed a proteomic approach to systematically identify human protein kinases that interact potently with viral proteins. For this purpose, we synthesized 412 full-length human protein kinases using the wheat germ cell-free protein synthesis system, and screened them for their association with a virus protein using the amplified luminescent proximity homogenous assay (AlphaScreen). Using this system, we attempted to discover a robust anti-viral host restriction mechanism targeting virus protein X (Vpx) of HIV-2. The screen identified H11/HSPB8 as a Vpx-binding protein that negatively regulates the stability and function of Vpx. Indeed, overexpression of H11/HSPB8 promoted the degradation of Vpx via the ubiquitin-proteasome pathway and inhibited its interaction with SAMHD1, a host restriction factor responsible for blocking replication of HIV. Conversely, targeted knockdown of H11/HSPB8 in human trophoblast cells, which ordinarily express high levels of this protein, restored the expression and function of Vpx, making the cells highly susceptible to viral replication. These results demonstrate that our proteomic approach represents a powerful tool for revealing virus-host interaction not yet identified by conventional methods. Furthermore, we showed that H11/HSPB8 could be a potential host regulatory factor that may prevent placental infection of HIV-2 during pregnancy.
Collapse
Affiliation(s)
- Ayumi Kudoh
- Department of Microbiology, School of Medicine, Yokohama City University Yokohama, Japan
| | - Kei Miyakawa
- Department of Microbiology, School of Medicine, Yokohama City University Yokohama, Japan
| | - Satoko Matsunaga
- Department of Microbiology, School of Medicine, Yokohama City University Yokohama, Japan
| | - Yuki Matsushima
- Kawasaki City Health and Safety Research Center Kanagawa, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | | | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University Yokohama, Japan
| |
Collapse
|