Beaudet R, Gagnon C, Bisaillon JG, Ishaque M. Microbiological aspects of aerobic thermophilic treatment of swine waste.
Appl Environ Microbiol 1990;
56:971-6. [PMID:
2339880 PMCID:
PMC184330 DOI:
10.1128/aem.56.4.971-976.1990]
[Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping.
Collapse