1
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
2
|
Vaisvila R, Vilkaitis G, Janulaitis A. Identification of a gene encoding a DNA invertase-like enzyme adjacent to the PaeR7I restriction-modification system. Gene 1995; 157:81-4. [PMID: 7607531 DOI: 10.1016/0378-1119(94)00793-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A gene encoding a DNA invertase-like enzyme was identified adjacent to the PaeR7I restriction-modification system (R-M), and was named paeR7IN (N for iNvertase). Sequence analysis revealed that this gene has the same polarity as the PaeR7IRM operon, and would encode a polypeptide of 21,506 Da. An amino-acid sequence similarity of 45-49% was found between the deduced protein product and various DNA invertases.
Collapse
Affiliation(s)
- R Vaisvila
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | |
Collapse
|
3
|
McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1994; 22:3640-59. [PMID: 7937074 PMCID: PMC308336 DOI: 10.1093/nar/22.17.3640] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Collapse
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
4
|
González E, Vásquez C. Characterization of the bstVIRM genes encoding the Bacillus stearothermophilus V restriction-modification system. Gene 1993; 131:103-6. [PMID: 8370531 DOI: 10.1016/0378-1119(93)90676-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide (nt) sequence of a 2.7-kb HindIII-EcoRI DNA fragment encoding the bstVIR and bstVIM genes has been determined. The sequence predicts a restriction endonuclease of 224 amino acids (aa), M(r) 25,104, and a methyl-transferase of 561 aa, M(r0 65,702. Both genes are aligned in the same orientation and are separated by a 102-nt intergenic region. No homology was found between R.BstVI and M.BstVI when their deduced aa sequences were compared. Significant similarity at the aa level was found, however, when both enzymes were compared to their equivalents in the paeR7IRM system of Pseudomonas aeruginosa PAO303.
Collapse
Affiliation(s)
- E González
- Departamento de Ciencias Biológicas, Universidad de Talca, Chile
| | | |
Collapse
|
5
|
Abstract
A standard DNA modification methyltransferase (MTase) selection protocol was followed to clone the BstVI restriction and modification system from Bacillus stearothermophilus in Escherichia coli. Both genes were contained in a 4.4-kb EcoRI fragment from B. stearothermophilus V chromosomal DNA. The heterologous expression of these genes did not depend on their orientation in the vector, suggesting that the genes are expressed in E. coli under the control of promoters located on the cloned fragment. Subcloning experiments demonstrated that the bstVIR gene was expressed in the absence of its cognate MTase.
Collapse
Affiliation(s)
- C Vásquez
- Departamento de Ciencias Biológicas, Universidad de Talca, Chile
| | | | | |
Collapse
|
6
|
Abstract
The genes for over 100 restriction-modification systems have now been cloned, and approximately one-half have been sequenced. Despite their similar function, they are exceedingly heterogeneous. The heterogeneity is evident at three levels: in the gene arrangements; in the enzyme compositions; and in the protein sequences. This paper summarizes the main features of the R-M systems that have been cloned.
Collapse
Affiliation(s)
- G G Wilson
- New England Biolabs, Inc., Beverly, MA 01915
| |
Collapse
|
7
|
Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1991; 19 Suppl:2045-71. [PMID: 1645875 PMCID: PMC331346 DOI: 10.1093/nar/19.suppl.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | |
Collapse
|
8
|
Nelson M, McClelland M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1989; 17 Suppl:r389-415. [PMID: 2541418 PMCID: PMC334788 DOI: 10.1093/nar/17.suppl.r389] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- M Nelson
- Department of Biochemistry, University of Chicago, IL 60637
| | | |
Collapse
|
9
|
Lunnen KD, Barsomian JM, Camp RR, Card CO, Chen SZ, Croft R, Looney MC, Meda MM, Moran LS, Nwankwo DO. Cloning type-II restriction and modification genes. Gene 1988; 74:25-32. [PMID: 3074013 DOI: 10.1016/0378-1119(88)90242-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have cloned into Escherichia coli the genes for 38 type-II bacterial modification methyltransferases. The clones were isolated by selecting in vitro for protectively modified recombinants. Most of the clones modify their DNA fully but a substantial number modify only partially. In approximately one-half of the clones, the genes for the corresponding endonucleases are also present. Some of these clones restrict infecting phages and others do not. Clones carrying endonuclease genes but lacking methyltransferase genes have been found, in several instances, to be viable.
Collapse
Affiliation(s)
- K D Lunnen
- New England Biolabs, Inc., Beverly, MA 01915
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The genes for numerous restriction endonucleases and modification methylases have been cloned into Escherichia coli. A summary is given for the clones isolated so far (115 entries) and of the procedures used to obtain them.
Collapse
Affiliation(s)
- G G Wilson
- New England Biolabs, Inc., Beverly, MA 01915
| |
Collapse
|
11
|
Howard KA, Card C, Benner JS, Callahan HL, Maunus R, Silber K, Wilson G, Brooks JE. Cloning the DdeI restriction-modification system using a two-step method. Nucleic Acids Res 1986; 14:7939-51. [PMID: 3022241 PMCID: PMC311826 DOI: 10.1093/nar/14.20.7939] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DdeI, a Type II restriction-modification system from the gram-negative anaerobic bacterium Desulfovibrio desulfuricans, recognizes the sequence CTNAG. The system has been cloned into E. coli in two steps. First the methylase gene was cloned into pBR322 and a derivative expressing higher levels was constructed. Then the endonuclease gene was located by Southern blot analyses; BamHI fragments large enough to contain the gene were cloned into pACYC184, introduced into a host containing the methylase gene, and screened for endonuclease activity. Both genes are stably maintained in E. coli on separate but compatible plasmids. The DdeI methylase is shown to be a cytosine methylase. DdeI methylase clones decrease in viability as methylation activity increases in E. coli RR1 (our original cloning strain). Therefore the DdeI system has been cloned and maintained in ER1467, a new E. coli cloning strain engineered to accept cytosine methylases. Finally, it has been demonstrated that a very high level of methylation was necessary in the DdeI system for successful introduction of the active endonuclease gene into E. coli.
Collapse
|
12
|
Abstract
The properties and sources of all known restriction endonucleases and methylases are listed. The enzymes are cross-indexed (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the double-stranded DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (integrated into Table II), the structure of the generated fragment ends (Table III), and the sensitivity to different kinds of DNA methylation (Table V). In Table IV the conversion of two- and four-base 5'-protruding ends into new recognition sequences is compiled which is obtained by the fill-in reaction with Klenow fragment of the Escherichia coli DNA polymerase I or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments. Table VI classifies the restriction methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises restriction endonucleases which are known to be inhibited or activated by the modified nucleotides. The detailed sequences of those overlapping restriction sites are also included which become resistant to cleavage after the sequential action of corresponding restriction methylases and endonucleases [N11, M21]. By this approach large DNA fragments can be generated which is helpful in the construction of genomic libraries. The data given in both Tables IV and VI allow the design of novel sequence specificities. These procedures complement the creation of universal cleavage specificities applying class IIS enzymes and bivalent DNA adapter molecules [P17, S82].
Collapse
|
13
|
Theriault G, Roy PH, Howard KA, Benner JS, Brooks JE, Waters AF, Gingeras TR. Nucleotide sequence of the PaeR7 restriction/modification system and partial characterization of its protein products. Nucleic Acids Res 1985; 13:8441-61. [PMID: 3001639 PMCID: PMC322144 DOI: 10.1093/nar/13.23.8441] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bal31 deletion experiments on clones of the PaeR7 restriction-modification system from Pseudomonas aeruginosa demonstrate that it is arranged as an operon, with the methylase gene preceding the endonuclease gene. The DNA sequence of this operon agrees with in vitro transcription-translation assays which predict proteins of 532 amino acids, Mr = 59,260 daltons, and 246 amino acids, Mr = 27,280 daltons, coincident with the methylase and endonuclease genes, respectively. These predicted values coincide with the measured molecular weights of the purified, denatured PaeR7 endonuclease and methylase proteins. The first twenty amino acids from the amino-terminus of the purified endonuclease exactly match those predicted from the DNA sequence. Finally, potential regulatory mechanisms for the expression of phage restriction are described based on the properties of several PaeR7 subclones.
Collapse
|
14
|
Kessler C, Neumaier PS, Wolf W. Recognition sequences of restriction endonucleases and methylases--a review. Gene 1985; 33:1-102. [PMID: 2985469 DOI: 10.1016/0378-1119(85)90119-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.
Collapse
|