1
|
Wenner N, Zhu X, Rowe WPM, Händler K, Hinton JCD. Succinate utilisation by Salmonella is inhibited by multiple regulatory systems. PLoS Genet 2024; 20:e1011142. [PMID: 38457455 DOI: 10.1371/journal.pgen.1011142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 01/19/2024] [Indexed: 03/10/2024] Open
Abstract
Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.
Collapse
Affiliation(s)
- Nicolas Wenner
- Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xiaojun Zhu
- Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Will P M Rowe
- Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kristian Händler
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Bartnik P, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato ( Solanum tuberosum L.) Plants. Int J Mol Sci 2021; 22:7346. [PMID: 34298965 PMCID: PMC8304393 DOI: 10.3390/ijms22147346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.
Collapse
Affiliation(s)
- Przemyslaw Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
3
|
Czajkowski R, Fikowicz-Krosko J, Maciag T, Rabalski L, Czaplewska P, Jafra S, Richert M, Krychowiak-Maśnicka M, Hugouvieux-Cotte-Pattat N. Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:580330. [PMID: 32983224 PMCID: PMC7492773 DOI: 10.3389/fpls.2020.580330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.
Collapse
Affiliation(s)
- Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Jakub Fikowicz-Krosko
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciag
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Lukasz Rabalski
- Division of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry - Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marta Krychowiak-Maśnicka
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS UMR5240, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| |
Collapse
|
4
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
5
|
Soudani S, Jeanneau E, Jelsch C, Lefebvre F, Ben Nasr C. A Hirshfeld surface analysis, crystal structure and physicochemical studies of zwitterionic complex: 1-(2-hydroxyethyl)piperaziniumtrichlorozincate (II). INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Allison TM, Conrad S, Castric P. The group I pilin glycan affects type IVa pilus hydrophobicity and twitching motility in Pseudomonas aeruginosa 1244. MICROBIOLOGY-SGM 2015; 161:1780-1789. [PMID: 26297472 DOI: 10.1099/mic.0.000128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The group I pilin category is the most common type of type IVa pilus produced by Pseudomonas aeruginosa. The lateral surfaces of these pili are characterized by the presence of closely spaced, covalently attached O-antigen repeating units. The current work was conducted to investigate the pilin glycan's effect on pilus solubility and function. Culture supernatant fluids containing fully, partially and non-glycosylated P. aeruginosa group I pili were tested for solubility in the presence of ammonium sulfate. These results showed that while pili expressing three or four sugars were highly soluble under all conditions, those with fewer than three were insoluble under the lowest salt concentrations tested. A representative of the P. aeruginosa group II pili also showed low solubility when assayed under these same conditions. Reduced solubility suggested an increased pilus surface hydrophobicity, which was supported by protein modelling. While having no effect on the WT strain, an ionic strength found at many host infection sites inhibited surface and subsurface twitching motility of strain 1244G7, an isogenic mutant unable to glycosylate pilin. This effect was reversed by mutant complementation. Twitching motility of P. aeruginosa strain PA103, which produces group II pili, was also inhibited by ionic strengths which influenced the mutant 1244 strain. We suggest that the group I pilin glycan may, therefore, be beneficial to this organism specifically for optimal pilus functioning at the many host disease sites with ionic strengths comparable to those tested here.
Collapse
Affiliation(s)
- Tara M Allison
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sean Conrad
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Peter Castric
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
7
|
Fleites LA, Mensi I, Gargani D, Zhang S, Rott P, Gabriel DW. Xanthomonas albilineans OmpA1 appears to be functionally modular and both the OMC and C-like domains are necessary for leaf scald disease of sugarcane. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1200-1210. [PMID: 23758144 DOI: 10.1094/mpmi-01-13-0002-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several EZ-Tn5 insertions in gene locus XALc_0557 (OmpA1) of the sugarcane leaf scald pathogen Xanthomonas albilineans XaFL07-1 were previously found to strongly affect pathogenicity and endophytic stalk colonization. XALc_0557 has a predicted OmpA N-terminal outer membrane channel (OMC) domain and an OmpA C-like domain. Further analysis of mutant M468, with an EZ-Tn5 insertion in the upstream OMC domain coding region, revealed impaired epiphytic and endophytic leaf survival, impaired resistance to sodium dodecyl sulfate (SDS), structural defects in the outer membrane (OM), and hyperproduction of OM vesicles. Cloned full-length XALc_0557 complemented M468 for all phenotypes tested, including pathogenicity, resistance to SDS, and ability to survive both endophytically and epiphytically. Another construct, pCT47.3, which expressed only the C-like domain of XALc_0557, restored resistance to SDS in M468 but failed to complement any other mutant phenotype, indicating that the C-like domain functioned independently of the OMC domain to help maintain OM integrity. pCT47.3 also complemented pathogenicity, resistance to SDS, and stalk colonization in mutant M1152, which carries an EZ-Tn5 insert in the C-like coding region, indicating that both predicted domains are modular and necessary but neither is sufficient for X. albilineans pathogenicity, endophytic survival in, and epiphytic survival on sugarcane.
Collapse
|
8
|
Vogel C, Innerebner G, Zingg J, Guder J, Vorholt JA. Forward genetic in planta screen for identification of plant-protective traits of Sphingomonas sp. strain Fr1 against Pseudomonas syringae DC3000. Appl Environ Microbiol 2012; 78:5529-35. [PMID: 22660707 PMCID: PMC3406163 DOI: 10.1128/aem.00639-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/21/2012] [Indexed: 01/02/2023] Open
Abstract
Sphingomonas sp. strain Fr1 has recently been shown to protect Arabidopsis thaliana against the bacterial leaf pathogen Pseudomonas syringae DC3000. Here, we describe a forward genetic in planta screen to identify genes in Sphingomonas sp. Fr1 necessary for this effect. About 5,000 Sphingomonas sp. Fr1 mini-Tn5 mutants were assayed for a defect in plant protection against a luxCDABE-tagged P. syringae DC3000 derivative in a space-saving 24-well plate system. The bioluminescence of the pathogen was used as the indicator of pathogen proliferation and allowed for the identification of Sphingomonas sp. Fr1 mutants that had lost the ability to restrict pathogen growth before disease symptoms were visible. Potential candidates were validated using the same miniaturized experimental system. Of these mutants, 10 were confirmed as plant protection defective yet colonization competent. The mutants were subsequently evaluated in a previously described standard microbox system, and plants showed enhanced disease phenotypes after pathogen infection relative to those inoculated with the parental strain as a control. However, the disease severities were lower than those observed for control plants that were grown axenically prior to pathogen challenge, which suggests that several traits may contribute to plant protection. Transposon insertion sites of validated mutants with defects in plant protection were determined and mapped to 7 distinct genomic regions. In conclusion, the established screening protocol allowed us to identify mutations that affect plant protection, and it opens the possibility to uncover traits important for in planta microbe-microbe interactions.
Collapse
|
9
|
Ghazal S, Elsayed W, Badr U, Gebreel H, Khalil K. Genetically Modified Strains of Xanthomonas campestris Higher Xanthan Producer and Capable to Utilize Whey. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/crb.2011.44.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Kobayashi DY, Tamaki SJ, Keen NT. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci U S A 2010; 86:157-61. [PMID: 16578838 PMCID: PMC286423 DOI: 10.1073/pnas.86.1.157] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three different cosmid clones were isolated from a genomic library of the tomato pathogen Pseudomonas syringae pv. tomato, which, when introduced into the soybean pathogen P. syringae pv. glycinea, caused a defensive hypersensitive response (HR) in certain soybean cultivars. Each clone was distinguished by the specific cultivars that reacted hypersensitively and by the intensity of the HR elicited. Unlike wild-type P. syringae pv. tomato isolates, which elicit the HR on all soybean cultivars, all three clones exhibited cultivar specificities analogous to avirulence genes previously cloned from P. syringae pv. glycinea. However, the collective phenotypes of the three clones accounted for HRs on all tested soybean cultivars. One of the three P. syringae pv. tomato clones contained an avirulence gene homologous to avrA, which was previously cloned from P. syringae pv. glycinea race 6. The other two P. syringae pv. tomato clones expressed unique HR patterns on various soybean cultivars, which were unlike those caused by any known P. syringae pv. glycinea race or previously cloned P. syringae pv. glycinea avr gene. Further characterization of the second P. syringae pv. tomato clone indicated that the avirulence phenotype resided on a 5.6-kilobase HindIII fragment that, in Southern blot analyses, hybridized to an identical-size fragment in various P. syringae pathovars, including all tested glycinea races. These results demonstrate that avirulence genes may be distributed among several P. syringae pathovars but may be modified so that the HR is not elicited in a particular host plant. Furthermore, the data raise the possibility that avirulence genes may function in host-range determination at levels above race-cultivar specificity.
Collapse
Affiliation(s)
- D Y Kobayashi
- Department of Plant Pathology, University of California, Riverside, CA 92521
| | | | | |
Collapse
|
11
|
Murphy PJ, Heycke N, Banfalvi Z, Tate ME, de Bruijn F, Kondorosi A, Tempé J, Schell J. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Natl Acad Sci U S A 2010; 84:493-7. [PMID: 16593802 PMCID: PMC304235 DOI: 10.1073/pnas.84.2.493] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In alfalfa nodules induced by Rhizobium meliloti strain L5-30 the compound L-3-O-methyl-scyllo-inosamine (3-O-MSI) is synthesized. This compound is also catabolized specifically by this strain. Its biological properties are therefore similar to the Agrobacterium opines. To answer the question whether opine-like compounds ("Rhizopines") play a role in a plant symbiotic interaction, we isolated the genes for the catabolism of 3-O-MSI (moc genes) and for the induction of its synthesis in the nodule [mos gene(s)]. moc and mos genes were shown to be closely linked and located on the Sym plasmid of L5-30, suggesting that they have co-evolved and may be important in symbiosis. These genes have been cloned into a broad host-range vector that can be mobilized into other R. meliloti strains where they are expressed. The location of the mos genes in the bacteria extends the opine concept, initially developed for a plant pathological interaction, to a symbiotic one.
Collapse
Affiliation(s)
- P J Murphy
- Max-Planck-Institut für Züchtungsforschung, Abt. Schell, D-5000 Köln 30, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu J, Olson ME, Kahn ML, Hurlbert RE. Characterization of Tn5-Induced Mutants of Xenorhabdus nematophilus ATCC 19061. Appl Environ Microbiol 2010; 57:1173-80. [PMID: 16348462 PMCID: PMC182864 DOI: 10.1128/aem.57.4.1173-1180.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative-selection vector, pHX1, was constructed for use in transposon mutagenesis of Xenorhabdus nematophilus ATCC 19061. pHX1 contains the Bacillus subtilis levansucrase gene which confers sucrose sensitivity. In addition, various Tn5-containing plasmids with different replication origins were transferred by conjugation from Escherichia coli into X. nematophilus ATCC 19061, and one of these plasmids, pGS9, yields Tn5 insertion mutants of X. nematophilus ATCC 19061. By using these two delivery vehicles, more than 250 putative Tn5 insertion mutants of X. nematophilus ATCC 19061 were isolated and were then characterized. Mutants that were altered in bromothymol blue adsorption, ability to lyse sheep erythrocytes, production of antibiotics on a variety of media, and virulence for Galleria mellonella were found.
Collapse
Affiliation(s)
- J Xu
- Department of Microbiology, Washington State University, Pullman, Washington 99164
| | | | | | | |
Collapse
|
13
|
Hayes F, Daly C, Fitzgerald GF. Identification of the Minimal Replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305. Appl Environ Microbiol 2010; 56:202-9. [PMID: 16348092 PMCID: PMC183273 DOI: 10.1128/aem.56.1.202-209.1990] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication functions of the stable, cryptic 8.7-kilobase (kb) plasmid pCI305 from multi-plasmid-containing Lactococcus lactis subsp. lactis UC317 were studied. Analysis of this replicon was facilitated by the construction of replication probe vectors that consisted of the pBR322 replication region, a pUC18-derived multiple cloning site, and either the cat gene of pC194 (pCI341; 3.1 kb) or the erm gene of pAMbeta1 (pCI3330; 4.0 kb). Plasmid pCI305 was introduced into plasmid-free L. lactis subsp. lactis MG1363Sm, a streptomycin-resistant derivative of MG1363, by a transformation procedure with the 75-kb lactose-proteinase plasmid pCI301 of UC317 as a marker plasmid. A combination of transposon Tn5 mutagenesis and subcloning in pCI341 and pCI3330 with individual Tn5 insertions around the replication region facilitated the identification of a 1.6-kb minimal replicon on pCI305. This region was separable into two domains: (i) a 1.3-kb region (repB) encoding a trans-acting function (in vitro transcription-translation studies suggested the involvement of a 48-kilodalton protein); and (ii) a 0.3-kb region (repA) sufficient to direct replication when provided with repB in trans and thus probably containing the origin of replication. Lactococcus-Escherichia coli shuttle vectors based on the pCI305 replication region were constructed.
Collapse
Affiliation(s)
- F Hayes
- Department of Food Microbiology and National Food Biotechnology Centre, University College, Cork, Ireland
| | | | | |
Collapse
|
14
|
Cebolla A, Ruiz-Berraquero F, Palomares AJ. Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring. Appl Environ Microbiol 2010; 59:2511-9. [PMID: 16349015 PMCID: PMC182313 DOI: 10.1128/aem.59.8.2511-2519.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the lambdap(R) promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 10 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment.
Collapse
Affiliation(s)
- A Cebolla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | | | | |
Collapse
|
15
|
Francis MS, Parker AF, Morona R, Thomas CJ. Bacteriophage Lambda as a Delivery Vector for Tn10-Derived Transposons in Xenorhabdus bovienii. Appl Environ Microbiol 2010; 59:3050-5. [PMID: 16349047 PMCID: PMC182405 DOI: 10.1128/aem.59.9.3050-3055.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus bovienii wild-type strains lack a functional receptor protein (LamB) in the outer membrane and as a result are unable to adsorb coliphage lambda (lambda). Introduction of plasmids encoding lamB into X. bovienii T228 results in constitutive expression of LamB in the outer membrane of this organism. LamB-expressing strains of X. bovienii adsorb lambda bacteriophage particles and can be used as hosts for lambda::Tn constructs. A Tn10-derived transposon, element 9 (J. C. Way, D. Davis, D. Morisato, D. E. Roberts, and N. Kleckner, Gene 32:369-379, 1984) was used to construct a variety of insertion mutants of X. bovienii. Mutants that had altered expression of protease, lipase, DNase, dye-binding capability, and hemolytic activity, in addition to a series of auxotrophic mutants, were isolated.
Collapse
Affiliation(s)
- M S Francis
- Department of Microbiology and Immunology, University of Adelaide, G.P.O. Box 498, Adelaide, South Australia, Australia, 5001
| | | | | | | |
Collapse
|
16
|
Al-Niemi TS, Summers ML, Elkins JG, Kahn ML, McDermott TR. Regulation of the Phosphate Stress Response in Rhizobium meliloti by PhoB. Appl Environ Microbiol 2010; 63:4978-81. [PMID: 16535758 PMCID: PMC1389314 DOI: 10.1128/aem.63.12.4978-4981.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkaline phosphatase activity and phosphate transport rates in Rhizobium meliloti increased significantly when medium phosphate levels decreased to approximately 10 (mu)M. Both responses were abolished in a Tn5:: phoB mutant, but the mutant could be complemented by a plasmid that contained cloned R. meliloti phoB. The PhoB(sup-) mutant had a normal symbiosis phenotype under growth conditions that supplied either limiting or nonlimiting levels of phosphate to the host plant Medicago sativa, suggesting that induction of genes by PhoB was not required for normal symbiotic function.
Collapse
|
17
|
Functional analysis of genes for benzoate metabolism in the albicidin biosynthetic region of Xanthomonas albilineans. Appl Microbiol Biotechnol 2010; 87:1475-85. [DOI: 10.1007/s00253-010-2620-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
18
|
|
19
|
Identification of differentially regulated francisella tularensis genes by use of a newly developed Tn5-based transposon delivery system. Appl Environ Microbiol 2008; 74:2637-45. [PMID: 18344342 DOI: 10.1128/aem.02882-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Francisella tularensis is the etiologic agent of an intracellular systemic infection of the lymphatic system in humans called tularemia. The organism has become the subject of considerable research interest due to its classification as a category A select agent by the CDC. To aid genetic analysis of this pathogen, we have constructed a temperature-sensitive Tn5-based transposon delivery system that is capable of generating chromosomal reporter fusions with lacZ or luxCDABE, enabling us to monitor gene expression. Transposition is catalyzed by the hyperactive Tn5 transposase, whose expression is driven by the Francisella groES promoter. When high-temperature selection (42 degrees C) is applied to a bacterial culture carrying the transposon delivery plasmid, approximately 0.1% of the population is recovered with Tn5 insertions in the chromosome. Nucleotide sequence analysis of a sample of mutants revealed that the insertions occur randomly throughout the chromosome. The kanamycin-selectable marker of the transposon is also flanked by FLP recombination target sequences that allow deletion of the antibiotic resistance gene when desired. This system has been used to generate transposon mutant libraries for the F. tularensis live vaccine strain as well as two different virulent F. tularensis strains. Chromosomal reporters delivered with the transposon were used to identify genes upregulated by growth in Chamberlain's defined medium. Genes in the fsl operon, reported to be involved in iron acquisition, as well as genes in the igl gene cluster were among those identified by the screen. Further experiments implicate the ferric uptake regulator (Fur) protein in the negative regulation of fsl but not igl reporters, which occurs in an iron-dependent manner. Our results indicate that we have created a valuable new transposon that can be used to identify and characterize virulence genes in F. tularensis strains.
Collapse
|
20
|
Faan YW, Yu M, Tsang JSH. Blue–white selection of regulatory genes that affect the expression of dehalogenase IVa of Burkholderia cepacia MBA4. Appl Microbiol Biotechnol 2007; 76:429-37. [PMID: 17530244 DOI: 10.1007/s00253-007-1015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
We have developed a method for rapid screening of genes that affected the expression of dehalogenase IVa of Burkholderia cepacia MBA4. The promoter region of the dehalogenase gene was used to drive the expression of a beta-galactosidase gene. A plasmid containing this reporter was first electroporated into MBA4, and a Tn5 containing suicidal plasmid was introduced subsequently. The use of electroporation was necessary because Escherichia coli mediated transconjugation was ineffective in plasmid-carrying MBA4. The number of integrants generated was directly proportional to the amount of plasmid DNA used. Integrants with an elevated beta-galactosidase activity were isolated. Mutants with a disruption in a putative iron-transporter gene and in a putative response regulator receiver gene were identified. The basal dehalogenase transcript levels of these mutants were higher than the wild type. These mutants also grow faster than the wild type in chloroacetate-containing medium. This methodology of isolating regulatory mutants is theoretically feasible and convenient for any kinds of bacteria.
Collapse
Affiliation(s)
- Yun-wing Faan
- Molecular Microbiology Laboratory, Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China,
| | | | | |
Collapse
|
21
|
Wu J, Hong Q, Han P, He J, Li S. A gene linB2 responsible for the conversion of β-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 2007; 73:1097-105. [PMID: 16977465 DOI: 10.1007/s00253-006-0579-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/09/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Commercial formulations of hexachlorocyclohexane (HCH) consist of a mixture of four isomers: alpha, beta, gamma, and delta. All four isomers are toxic and recalcitrant pollutants. beta-HCH is more problematic due to its longer persistence in the environment. Sphingomonas sp. BHC-A was able to degrade not only alpha-, gamma-, and delta-HCH but also beta-HCH. To clone a gene responsible for the degradation of beta-HCH, a Tn5 mutation was introduced into BHC-A, and one mutant BHC-A45 defective in beta-HCH degradation was selected. Sequencing analysis showed this mutant had a Tn5 insertion at the site of one haloalkane dehalogenase gene, designated linB2. linB2 was overexpressed in Escherichia coli and the 32-kDa product LinB2 showed the conversion activity of not only beta-HCH to beta-2,3,4,5,6-pentachlorocyclohexanol (beta-PCHL) but also beta-PCHL to beta-2,3,5,6-tetrachloro-1,4-cyclohexanediol.
Collapse
Affiliation(s)
- Jun Wu
- Department of Microbiology, Nanjing Agricultural University, 6 Tongwei Rd, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Braun Y, Smirnova AV, Weingart H, Schenk A, Ullrich MS. A Temperature‐Sensing Histidine Kinase—Function, Genetics, and Membrane Topology. Methods Enzymol 2007; 423:222-49. [PMID: 17609134 DOI: 10.1016/s0076-6879(07)23010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two-component systems provide a means for bacteria to sense and adapt to environmental signals in order to survive in a continuously changing environment. Understanding of the mechanism by which these systems function is important in combating bacterial infections because many bacterial two-component systems are associated with virulence. The plant pathogenic bacterium Pseudomonas syringae pv. glycinea PG4180 synthesizes high levels of the phytotoxin coronatine at the virulence-promoting temperature of 18 degrees , but not at 28 degrees , the optimal growth temperature. Temperature-dependent coronatine biosynthesis is regulated by a modified two-component system, consisting of the response regulator, CorR, the histidine protein kinase CorS, and a third component, CorP. To elucidate the mechanism by which CorRSP functions, genetic, transcriptional, and biochemical analyses were applied, including in vitro and in planta reporter gene analysis, mRNA quantification, protein expression, mutagenesis, and membrane topology analysis. A combination of these techniques helped to elucidate, to a considerable extent, the temperature-sensing activity of CorS, which seems to act as a membrane-bound molecular thermometer.
Collapse
Affiliation(s)
- Yvonne Braun
- School of Engineering and Science, International University Bremen, Bremen, Germany
| | | | | | | | | |
Collapse
|
23
|
Rossbach S, Schell J, de Bruijn FJ. The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways. ACTA ACUST UNITED AC 2006; 209:419-26. [PMID: 17193704 DOI: 10.1007/bf00331144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ntrC locus of Agrobacterium tumefaciens C58 has been cloned using the Azorhizobium sesbaniae ORS571 ntrC gene as a DNA hybridization probe. Transposon Tn5 mutagenesis of the cloned ntrC locus was carried out and one Tn5 insertion within the region of highest DNA homology with A. sesbaniae ORS571 ntrC was used for gene replacement of the wild-type C58 ntrC gene. The A. tumefaciens ntrC::Tn5 mutant was found to be unable to grow on nitrate as sole nitrogen (N) source, to lack glutamine synthetase (GSII) activity and to be unable to use arginine (or ornithine) as sole N source, unless the Ti-encoded arginine catabolism pathway was induced with small amounts of nopaline. Thus the A. tumefaciens ntrC regulatory gene is essential for (transcriptional) activation of the GSII and nitrate reductase genes, as well as for the chromosomal but not the Ti-borne arginine catabolism pathways.
Collapse
Affiliation(s)
- S Rossbach
- Max-Planck-Institut für Züchtungsforschung, Abteilung Genetische Grundlagen der Pflanzenzüchtung, D-5000, Köln 30, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Involvement of a Gene Encoding Putative Acetate Kinase in Magnetosome Synthesis in Magnetospirillum magneticum AMB-1. HAYATI JOURNAL OF BIOSCIENCES 2006. [DOI: 10.1016/s1978-3019(16)30375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Liu CQ, Charoechai P, Khunajakr N, Deng YM, Dunn NW. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 2002; 297:241-7. [PMID: 12384305 DOI: 10.1016/s0378-1119(02)00918-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A plasmid-borne copper resistance operon (lco) was identified from Lactococcus lactis subsp. lactis LL58-1. The lco operon consists of three structural genes lcoABC. The predicted products of lcoA and lcoB were homologous to chromosomally encoded prolipoprotein diacylglyceral transferases and two uncharacterized proteins respectively, and the product of lcoC is similar to several multicopper oxidases, which are generally plasmid-encoded. This genetic organization represents a new combination of genes for copper resistance in bacteria. The three genes are co-transcribed from a copper-inducible promoter, which is controlled by lcoRS encoding a response regulator and a kinase sensor. The five genes are flanked by two insertion sequences, almost identical to IS-LL6 from L. lactis. Transposon mutagenesis and subcloning analysis indicated that the three structural genes were all required for copper resistance. Copper assay results showed that the extracellular concentration of copper of L. lactis LM0230 containing the lco operon was significantly higher than that of the host strain when copper was added at concentrations from 2 to 3 mM. The results suggest that the lco operon conferred copper resistance by reducing the intracellular accumulation of copper ions in L. lactis.
Collapse
Affiliation(s)
- Chun-Qiang Liu
- Cooperative Research Centre for Food Industry Innovation, Department of Biotechnology, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
26
|
Swords WE, Chance DL, Cohn LA, Shao J, Apicella MA, Smith AL. Acylation of the lipooligosaccharide of Haemophilus influenzae and colonization: an htrB mutation diminishes the colonization of human airway epithelial cells. Infect Immun 2002; 70:4661-8. [PMID: 12117980 PMCID: PMC128210 DOI: 10.1128/iai.70.8.4661-4668.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is a commensal and opportunistic pathogen of the human airways. A number of surface molecules contribute to colonization of the airways by H. influenzae, such as adhesins, including structures found in the lipooligosaccharide (LOS). A human bronchiolar xenograft model was employed to investigate the host-bacterial interactions involved in the colonization of the airway by H. influenzae. Differential display was used to identify H. influenzae mRNA that reflect genes which were preferentially expressed in the xenograft compared to growth. Eleven mRNA fragments had consistent increased expression when the bacteria grew in xenografts. On sequencing these fragments, eight open reading frames were identified. Three of these had no match in the NCBI or the TIGR database, while an additional three were homologous to genes involved in heme or iron acquisition and utilization: two of the mRNAs encoded proteins homologous to enzymes involved in LOS biosynthesis: a heptosyl transferase (rfaF) involved in the synthesis of the LOS core and a ketodeoxyoctonate phosphate-dependent acyltransferase (htrB) that performs one of the late acylation reactions in lipid A synthesis. Inoculation of human bronchiolar xenografts revealed a significant reduction in colonization capacity by htrB mutants. In vitro, htrB mutants elicited lesser degrees of cytoskeletal rearrangement and less stimulation of host cell signaling with 16HBE14o(-) cells and decreased intracellular survival. These results implicate acylation of H. influenzae lipid A as playing a key role in the organisms' colonization of the normal airway.
Collapse
Affiliation(s)
- W Edward Swords
- Department of Microbiology, University of Iowa, Iowa City, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kobayashi DY, Reedy RM, Bick J, Oudemans PV. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 2002; 68:1047-54. [PMID: 11872449 PMCID: PMC123742 DOI: 10.1128/aem.68.3.1047-1054.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Accepted: 12/17/2001] [Indexed: 11/20/2022] Open
Abstract
A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.
Collapse
Affiliation(s)
- Donald Y Kobayashi
- Department of Plant Biology & Pathology, Cook College, Rutgers State University, New Brunswick, New Jersey 08901, USA.
| | | | | | | |
Collapse
|
28
|
Suominen L, Roos C, Lortet G, Paulin L, Lindström K. Identification and Structure of the Rhizobium galegae Common Nodulation Genes: Evidence for Horizontal Gene Transfer. Mol Biol Evol 2001; 18:907-16. [PMID: 11371578 DOI: 10.1093/oxfordjournals.molbev.a003891] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.
Collapse
Affiliation(s)
- L Suominen
- Department of Applied Chemistry and Microbiology, Institute of Biotechnology, University of Helsinki, Biocenter 1, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
29
|
Guilhabert MR, Hoffman LM, Mills DA, Kirkpatrick BC. Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:701-706. [PMID: 11386365 DOI: 10.1094/mpmi.2001.14.6.701] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pierce's disease, a lethal disease of grapevine, is caused by Xylella fastidiosa, a gram-negative, xylem-limited bacterium that is transmitted from plant to plant by xylem-feeding insects. Strains of X. fastidiosa also have been associated with diseases that cause tremendous losses in many other economically important plants, including citrus. Although the complete genome sequence of X. fastidiosa has recently been determined, the inability to transform or produce transposon mutants of X. fastidiosa has been a major impediment to understanding pathogen-, plant-, and insect-vector interactions. We evaluated the ability of four different suicide vectors carrying either Tn5 or Tn10 transposons as well as a preformed Tn5 transposase-transposon synaptic complex (transposome) to transpose X. fastidiosa. The four suicide vectors failed to produce any detectable transposition events. Electroporation of transposomes, however, yielded 6 x 10(3) and 4 x 10(3) Tn5 mutants per microg of DNA in two different grapevine strains of X. fastidiosa. Molecular analysis showed that the transposition insertions were single, independent, stable events. Sequence analysis of the Tn5 insertion sites indicated that the transpositions occur randomly in the X. fastidiosa genome. Transposome-mediated mutagenesis should facilitate the identification of X. fastidiosa genes that mediate plant pathogenicity and insect transmission.
Collapse
Affiliation(s)
- M R Guilhabert
- Department of Plant Pathology, University of California-Davis 95616, USA
| | | | | | | |
Collapse
|
30
|
Sullivan JT, Brown SD, Yocum RR, Ronson CW. The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1315-1322. [PMID: 11320134 DOI: 10.1099/00221287-147-5-1315] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The symbiosis island of Mesorhizobium sp. strain R7A is a 500 kb chromosomal genetic element that upon transfer converts nonsymbiotic mesorhizobia to symbionts able to nodulate and fix nitrogen with Lotus corniculatus. Four genomic species of nonsymbiotic mesorhizobia have been isolated. All were auxotrophic for thiamin and biotin and three were auxotrophic for nicotinate, whereas derivatives of the strains containing the symbiosis island were prototrophic for all three vitamins. In this work, a 13.2 kb region of the island that converts the nonsymbionts to nicotinate and biotin prototrophy was characterized. The region contained orthologues of the Escherichia coli bioBFD and A genes arranged in an operon with a novel gene, bioZ, a nadABC operon, the nitrogen-fixation regulatory gene nifA, and a homologue of the pantothenate biosynthesis gene panD. The bioZ gene product was similar to beta-ketoacyl-acyl carrier protein synthase III (FabH). bioZ::Tn5 mutants grew poorly in the absence of biotin and the bioZ gene complemented an E. coli bioH mutant, suggesting that its product is involved in the synthesis of pimeloyl-COA: The bio operon was not required for symbiosis, as only mutants in the nifA gene were impaired in symbiosis, and a bioA::Tn5 mutant was not impaired in rhizosphere colonization. The rationale for the vitamin biosynthetic loci being located on an acquired genetic element that is absent from nonsymbiotic mesorhizobia remains to be determined.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand1
| | - Steven D Brown
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand1
| | | | - Clive W Ronson
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand1
| |
Collapse
|
31
|
Núñez MF, Teresa Pellicer M, Badı A J, Aguilar J, Baldomà L. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1069-1077. [PMID: 11283302 DOI: 10.1099/00221287-147-4-1069] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli the glc operon involved in glycolate utilization is located at 67.3 min and formed by genes encoding the enzymes glycolate oxidase (glcDEF) and malate synthase G (glcB). Their expression from a single promoter upstream of glcD is induced by growth on glycolate and regulated by the activator encoded by the divergently transcribed gene glcC. Gene yghK, located 350 bp downstream of glcB, encodes a hydrophobic protein highly similar to the L-lactate permease encoded by lldP. Expression studies have shown that the yghK gene (proposed name glcA) is transcribed from the same promoter as the other glc structural genes and thus belongs to the glc operon. Characterization of a glcA::cat mutant showed that GlcA acts as glycolate permease and that glycolate can also enter the cell through another transport system. Evidence is presented of the involvement of L-lactate permease in glycolate uptake. Growth on this compound was abolished in a double mutant of the paralogous genes glcA and lldP, and restored with plasmids expressing either GlcA or LldP. Characterization of the putative substrates for these two related permeases showed, in both cases, specificity for the 2-hydroxymonocarboxylates glycolate, L-lactate and D-lactate. Although both GlcA and LldP recognize D-lactate, mutant analysis proved that L-lactate permease is mainly responsible for its uptake.
Collapse
Affiliation(s)
- M Felisa Núñez
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain1
| | - M Teresa Pellicer
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain1
| | - Josefa Badı A
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain1
| | - Juan Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain1
| | - Laura Baldomà
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain1
| |
Collapse
|
32
|
Abstract
The mobilization region of plasmid CloDF13 was localized to a 3.6 kb DNA segment that was analysed by transposon mutagenesis and DNA sequencing. Analysis of the DNA sequence allowed us to identify two mobilization genes and the CloDF13 origin of conjugative transfer (oriT), which was localized to a 661 bp segment at one end of the mobilization (Mob) region. Thus, the overall organization was oriT-mobB-mobC. Plasmid CloDF13 DNA was isolated mainly as a relaxed form that contained a unique strand and site-specific cleavage site (nic). The position of nic was mapped to the sequence 5'-GGGTG/GTCGGG-3' by primer extension and sequencing reactions. Analysis of Mob- insertion mutants showed that mobC was essential for CloDF13 relaxation in vivo. The sequence of mobC predicts a protein (MobC) of 243 amino acids without significant similarity to previously reported relaxases. In addition to MobC, the product of mobB was also required for CloDF13 mobilization and for oriT relaxation in vivo. mobB codes for a protein (MobB) of 653 amino acids with three predicted transmembrane segments at the N-terminus and the NTP-binding motifs characteristic of the TraG family of conjugative coupling proteins. Membership of the TraG family was confirmed by the fact that CloDF13 mobilization by plasmid R388 was independent of TrwB and only required PILW. However, contrary to the activities found for other coupling proteins, MobB was required for efficient oriT cleavage in vivo, suggesting an additional role for this particular protein during oriT processing for mobilization. Additionally, the cleavage site produced by the joint activities of MobB and MobC was shown to contain unblocked ends, suggesting that no stable covalent intermediates between relaxase and DNA were formed during the nic cleavage reaction. This is the first report of a conjugative transfer system in which nic cleavage results in a free nicked-DNA intermediate.
Collapse
Affiliation(s)
- B Núñez
- Departamento de Biología Molecular (Unidad asociada al CIB, CSIC), Universidad de Cantabria, C/Herrera Oria s/n, 39011 Santander, Spain
| | | |
Collapse
|
33
|
Wright SA, Zumoff CH, Schneider L, Beer SV. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 2001; 67:284-92. [PMID: 11133457 PMCID: PMC92566 DOI: 10.1128/aem.67.1.284-292.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. coli DH5alpha and had distinct restriction enzyme profiles. A smaller, antibiotic-conferring DNA segment from each cosmid was cloned. Each subclone was characterized and mutagenized with transposons to generate clones that were deficient in conferring pantocin A and B production, respectively. Mutated subclones were introduced into Eh318 to create three antibiotic-defective marker exchange mutants: strain Eh421 (pantocin A deficient); strain Eh439 (pantocin B deficient), and Eh440 (deficient in both pantocins). Cross-hybridization results, restriction maps, and spectrum-of-activity data using the subclones and marker exchange mutants, supported the presence of two distinct antibiotics, pantocin A and pantocin B, whose biosynthetic genes were present in pCPP702 and pCPP704, respectively. The structure of pantocin A is unknown, whereas that of pantocin B has been determined as (R)-N-[((S)-2-amino-propanoylamino)-methyl]-2-methanesulfonyl-s uccina mic acid. The two pantocins mainly affect other enteric bacteria, based on limited testing.
Collapse
Affiliation(s)
- S A Wright
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
34
|
van Dijk K, Nelson EB. Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 2000; 66:5340-7. [PMID: 11097912 PMCID: PMC92466 DOI: 10.1128/aem.66.12.5340-5347.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections.
Collapse
Affiliation(s)
- K van Dijk
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203, USA
| | | |
Collapse
|
35
|
Huang G, Zhang L, Birch RG. Albicidin antibiotic and phytotoxin biosynthesis in Xanthomonas albilineans requires a phosphopantetheinyl transferase gene. Gene 2000; 258:193-9. [PMID: 11111057 DOI: 10.1016/s0378-1119(00)00451-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xanthomonas albilineans produces a family of highly potent antibiotics and phytotoxins called albicidins, which are key pathogenesis factors in the systemic development of leaf scald disease of sugarcane. A gene (xabA) required for albicidin biosynthesis encodes a peptide of 278 amino acids, including the signature sequence motifs for phosphopantetheinyl transferases (PPTases) that activate polyketide and non-ribosomal peptide synthetases. The Escherichia coli entD gene, which encodes a PPTase involved in biosynthesis of enterobactin (a siderophore), restored biosynthesis of albicidin (a DNA replication inhibitor) in X. albilineans Tox- LS156 (xabA::Tn5). We conclude that XabA is a PPTase required for post-translational activation of synthetases in the albicidin biosynthetic pathway. This is the first antibiotic or toxin biosynthesis gene characterized from the genus Xanthomonas, and the first demonstration that antibiotic synthetases in the Pseudomonadaceae, like those in the Enterobacteriaceae and in Gram-positive bacteria, can require activation by a PPTase. Coupled with the recent demonstration of a separate albicidin biosynthetic gene cluster, the results indicate the possibility for overproduction of albicidins,which allows better understanding and application of these potent inhibitors of prokaryote DNA replication.
Collapse
Affiliation(s)
- G Huang
- Department of Botany, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
36
|
Persuhn DC, Souza EM, Steffens MB, Pedrosa FO, Yates MG, Rigo LU. The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae. FEMS Microbiol Lett 2000; 192:217-21. [PMID: 11064198 DOI: 10.1111/j.1574-6968.2000.tb09385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The role of the Ntr system in Herbaspirillum seropedicae was determined via ntrB and ntrC mutants. Three phenotypes were identified in these mutants: Nif(-), deficiency in growth using nitrate, and low glutamine synthetase (GS) activity. All phenotypes were restored by the plasmid pKRT1 containing the intact glnA, ntrB and ntrC genes of H. seropedicae. The promoter region of glnA was subcloned into a beta-galactosidase fusion vector and the results suggested that NtrC positively regulates the glnA promoter in response to low nitrogen. The H. seropedicae ntrC and ntrB mutant strains showed a deficiency of adenylylation/deadenylylation of GS, indicating that NtrC and NtrB are involved in both transcription and activity control of GS in this organism.
Collapse
Affiliation(s)
- D C Persuhn
- Departamento de Bioquímica, Universidade Federal do Paraná, C. Postal 19046, 81531-990, PR, Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Huang G, Zhang L, Birch RG. Analysis of the genes flanking xabB: a methyltransferase gene is involved in albicidin biosynthesis in Xanthomonas albilineans. Gene 2000; 255:327-33. [PMID: 11024293 DOI: 10.1016/s0378-1119(00)00320-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xabB promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of thp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis.
Collapse
Affiliation(s)
- G Huang
- Department of Botany, The University of Queensland, 4072, Brisbane, Australia
| | | | | |
Collapse
|
38
|
Ibañez E, Gimenez R, Pedraza T, Baldoma L, Aguilar J, Badia J. Role of the yiaR and yiaS genes of Escherichia coli in metabolism of endogenously formed L-xylulose. J Bacteriol 2000; 182:4625-7. [PMID: 10913097 PMCID: PMC94635 DOI: 10.1128/jb.182.16.4625-4627.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes yiaP and yiaR of the yiaKLMNOPQRS cluster of Escherichia coli are required for the metabolism of the endogenously formed L-xylulose, whereas yiaS is required for this metabolism only in araD mutants. Like AraD, YiaS was shown to have L-ribulose-5-phosphate 4-epimerase activity. Similarity of YiaR to several 3-epimerases suggested that this protein could catalyze the conversion of L-xylulose-5-phosphate into L-ribulose-5-phosphate, thus completing the pathway between L-xylulose and the general metabolism.
Collapse
Affiliation(s)
- E Ibañez
- Department of Biochemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Ibañez E, Campos E, Baldoma L, Aguilar J, Badia J. Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli: involvement of the main transcriptional factors. J Bacteriol 2000; 182:4617-24. [PMID: 10913096 PMCID: PMC94634 DOI: 10.1128/jb.182.16.4617-4624.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yiaKLMNOPQRS (yiaK-S) gene cluster of Escherichia coli is believed to be involved in the utilization of a hitherto unknown carbohydrate which generates the intermediate L-xylulose. Transcription of yiaK-S as a single message from the unique promoter found upstream of yiaK is proven in this study. The 5' end has been located at 60 bp upstream from the ATG. Expression of the yiaK-S operon is controlled in the wild-type strain by a repressor encoded by yiaJ. No inducer molecule of the yiaK-S operon has been identified among over 80 carbohydrate or derivative compounds tested, the system being expressed only in a mutant strain lacking the YiaJ repressor. The lacZ transcriptional fusions in the genetic background of the mutant strain revealed that yiaK-S is modulated by the integration host factor and by the cyclic AMP (cAMP)-cAMP receptor protein (Crp) activator complex. A twofold increase in the induction was observed during anaerobic growth, which was independent of ArcA or Fnr. Gel mobility shift assays showed that the YiaJ repressor binds to a promoter fragment extending from -50 to +121. These studies also showed that the cAMP-Crp complex can bind to two different sites. The lacZ transcriptional fusions of different fragments of the promoter demonstrated that binding of cAMP-Crp to the Crp site 1, centered at -106, is essential for yiaK-S expression. The 5' end of the yiaJ gene was determined, and its promoter region was found to overlap with the divergent yiaK-S promoter. Expression of yiaJ is autogenously regulated and reduced by the binding of Crp-cAMP to the Crp site 1 of the yiaK-S promoter.
Collapse
Affiliation(s)
- E Ibañez
- Department of Biochemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Huang G, Zhang L, Birch RG. Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett Appl Microbiol 2000; 31:149-53. [PMID: 10972718 DOI: 10.1046/j.1365-2672.2000.00781.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A simple approach is described to efficiently amplify DNA sequences flanking transposon Tn5 insertions. The method involves: (i) digestion with a restriction enzyme that cuts within Tn5; (ii) self-ligation under conditions favouring the production of monomeric circles; (iii) four parallel PCR reactions using primers designed to amplify left or right flanking sequences, and to distinguish target amplicons from non-specific products. This reveals the number of Tn5 insertions and the size of flanking genomic restriction fragments, without Southern blot analysis. The amplified product contains restriction sites that facilitate cohesive-end cloning. This rapid method is demonstrated using Tn5 and Tn5-Mob tagged DNA sequences involved in albicidin biosynthesis in Xanthomonas albilineans. It is generally applicable for efficient recovery of DNA sequences flanking transposon Tn5 derivatives in insertional mutagenesis studies.
Collapse
Affiliation(s)
- G Huang
- Department of Botany, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
41
|
Rowe S, Hodson N, Griffiths G, Roberts IS. Regulation of the Escherichia coli K5 capsule gene cluster: evidence for the roles of H-NS, BipA, and integration host factor in regulation of group 2 capsule gene clusters in pathogenic E. coli. J Bacteriol 2000; 182:2741-5. [PMID: 10781541 PMCID: PMC101981 DOI: 10.1128/jb.182.10.2741-2745.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 02/25/2000] [Indexed: 12/31/2022] Open
Abstract
The expression of Escherichia coli group 2 capsules (K antigens) is temperature dependent, with capsules only being expressed at temperatures above 20 degrees C. Thermoregulation is at the level of transcription, with no detectable transcription at 20 degrees C. Using the E. coli K5 capsule gene cluster as a model system, we have shown that the nucleoid-associated protein H-NS plays a dual role in regulating transcription of group 2 capsule gene clusters at 37 and 20 degrees C. At 37 degrees C H-NS is required for maximal transcription of group 2 capsule gene clusters, whereas at 20 degrees C H-NS functions to repress transcription. The BipA protein, previously identified as a tyrosine-phosphorylated GTPase and essential for virulence in enteropathogenic E. coli, was shown to play a similar role to H-NS in regulating transcription at 37 and 20 degrees C. The binding of integration host factor (IHF) to the region 1 promoter was necessary to potentiate transcription at 37 degrees C and IHF binding demonstrated by bandshift assays. The IHF binding site was 3' to the site of transcription initiation, suggesting that sequences in the 5' end of the first gene (kpsF) in region 1 may play a role in regulating transcription from this promoter at 37 degrees C. Two additional cis-acting sequences, conserved in both the region 1 and 3 promoters, were identified, suggesting a role for these sequences in the coordinate regulation of transcription from these promoters. These results indicate that a complex regulatory network involving a number of global regulators exists for the control of expression of group 2 capsules in E. coli.
Collapse
Affiliation(s)
- S Rowe
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
42
|
Monterrubio R, Baldoma L, Obradors N, Aguilar J, Badia J. A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli. J Bacteriol 2000; 182:2672-4. [PMID: 10762278 PMCID: PMC111340 DOI: 10.1128/jb.182.9.2672-2674.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for D-galactarate (gar) and D-glucarate (gud) metabolism in Escherichia coli are organized in three transcriptional units: garD, garPLRK, and gudPD. Two observations suggested a common regulator for the three operons. (i) Their expression was triggered by D-galactarate, D-glucarate, and D-glycerate. (ii) Metabolism of the three compounds was impaired by a single Tn5 insertion mapped in the yaeG gene (proposed name, sdaR), outside the D-galactarate and D-glucarate systems. Expression of the sdaR gene is autogenously regulated.
Collapse
Affiliation(s)
- R Monterrubio
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Botero LM, Al-Niemi TS, McDermott TR. Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl Environ Microbiol 2000; 66:15-22. [PMID: 10618197 PMCID: PMC91779 DOI: 10.1128/aem.66.1.15-22.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.
Collapse
Affiliation(s)
- L M Botero
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
44
|
Abstract
We have established a transposon mutagenesis procedure for the moderate halophile Halomonas eurihalina, a bacteria that produces an exopolysaccharide (EPS) of considerable biotechnological interest. We used suicide plasmids pUT and pSUP102 to introduce the transposons mini-Tn5 and Tn1732 into H. eurihalina via Escherichia coli mediated conjugation. Southern hybridization analysis demonstrated that insertions of the transposon mini-Tn5 into H. eurihalina occurred randomly at single sites in the chromosome, whereas Tn1732 insertion also took place at random, but simultaneously, at several sites. Phenotypic analysis revealed that different mutants were generated by using mini-Tn5. The isolation of exopolysaccharide-defective strains is the first stage towards carrying out genetic studies on EPS production by this microorganism.
Collapse
Affiliation(s)
- I Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Spain
| | | | | | | |
Collapse
|
45
|
Klassen G, Pedrosa FO, Souza EM, Yates MG, Rigo LU. Sequencing and functional analysis of the nifENXorf1orf2 gene cluster of Herbaspirillum seropedicae. FEMS Microbiol Lett 1999; 181:165-70. [PMID: 10564803 DOI: 10.1111/j.1574-6968.1999.tb08840.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 5.1-kb DNA fragment from the nifHDK region of H. seropedicae was isolated and sequenced. Sequence analysis showed the presence of nifENXorf1orf2 but nifTY were not present. No nif or consensus promoter was identified. Furthermore, orf1 expression occurred only under nitrogen-fixing conditions and no promoter activity was detected between nifK and nifE, suggesting that these genes are expressed from the upstream nifH promoter and are parts of a unique nif operon. Mutagenesis studies indicate that nifN was essential for nitrogenase activity whereas nifXorf1orf2 were not. High homology between the C-terminal region of the NifX and NifB proteins from H. seropedicae was observed. Since the NifX and NifY proteins are important for FeMo cofactor (FeMoco) synthesis, we propose that alternative proteins with similar activities exist in H. seropedicae.
Collapse
Affiliation(s)
- G Klassen
- Departamento de Bioquímica, Universidade Federal do Paraná, C.P. 19046, 81531-990, Curitiba-PR, Brazil
| | | | | | | | | |
Collapse
|
46
|
Cusa E, Obradors N, Baldomà L, Badía J, Aguilar J. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol 1999; 181:7479-84. [PMID: 10601204 PMCID: PMC94204 DOI: 10.1128/jb.181.24.7479-7484.1999] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth experiments with Escherichia coli have shown that this organism is able to use allantoin as a sole nitrogen source but not as a sole carbon source. Nitrogen assimilation from this compound was possible only under anaerobic conditions, in which all the enzyme activities involved in allantoin metabolism were detected. Of the nine genes encoding proteins required for allantoin degradation, only the one encoding glyoxylate carboligase (gcl), the first enzyme of the pathway leading to glycerate, had been identified and mapped at centisome 12 on the chromosome map. Phenotypic complementation of mutations in the other two genes of the glycerate pathway, encoding tartronic semialdehyde reductase (glxR) and glycerate kinase (glxK), allowed us to clone and map them closely linked to gcl. Complete sequencing of a 15.8-kb fragment encompassing these genes defined a regulon with 12 open reading frames (ORFs). Due to the high similarity of the products of two of these ORFs with yeast allantoinase and yeast allantoate amidohydrolase, a systematic analysis of the gene cluster was undertaken to identify genes involved in allantoin utilization. A BLASTP search predicted four of the genes that we sequenced to encode allantoinase (allB), allantoate amidohydrolase (allC), ureidoglycolate hydrolase (allA), and ureidoglycolate dehydrogenase (allD). The products of these genes were overexpressed and shown to have the predicted corresponding enzyme activities. Transcriptional fusions to lacZ permitted the identification of three functional promoters corresponding to three transcriptional units for the structural genes and another promoter for the regulatory gene allR. Deletion of this regulatory gene led to constitutive expression of the regulon, indicating a negatively acting function.
Collapse
Affiliation(s)
- E Cusa
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Zou CH, Knirel YA, Helbig JH, Zähringer U, Mintz CS. Molecular cloning and characterization of a locus responsible for O acetylation of the O polysaccharide of Legionella pneumophila serogroup 1 lipopolysaccharide. J Bacteriol 1999; 181:4137-41. [PMID: 10383989 PMCID: PMC93911 DOI: 10.1128/jb.181.13.4137-4141.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/1999] [Accepted: 04/26/1999] [Indexed: 11/20/2022] Open
Abstract
Complementation experiments, Tn5 mutagenesis, and DNA sequencing were used to identify a locus (lag-1) that participates in acetylation of Legionella pneumophila serogroup 1 lipopolysaccharide. Nuclear magnetic resonance analyses of lipopolysaccharides from mutant and complemented strains suggest that lag-1 is responsible for O acetylation of serogroup 1 O polysaccharide.
Collapse
Affiliation(s)
- C H Zou
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, 33101, USA
| | | | | | | | | |
Collapse
|
48
|
Cantey JR, Blake RK, Williford JR, Moseley SL. Characterization of the Escherichia coli AF/R1 pilus operon: novel genes necessary for transcriptional regulation and for pilus-mediated adherence. Infect Immun 1999; 67:2292-8. [PMID: 10225886 PMCID: PMC115969 DOI: 10.1128/iai.67.5.2292-2298.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated the genetic determinant of AF/R1 pilus production in attaching/effacing Escherichia coli RDEC-1 and identified seven genes required for pilus expression and function. DNA sequence analysis of the structural subunit gene afrA corrected an error in the published sequence and extended homology with the F18 pilus subunit of pig edema E. coli strains. AfrB and AfrC, encoded downstream from AfrA, were required for pilus expression. AfrB was related to the usher protein PefC of Salmonella typhimurium plasmid-encoded fimbriae, and AfrC was related to PefD, a chaperone protein. AfrD and AfrE, encoded downstream from AfrC, were not necessary for the expression of AF/R1 pili but were required for ileal adherence as assayed by ileal brush border aggregation. Thus, the adhesive subunit of the AF/R1 pilus is distinct from the structural subunit, as is the case for Pap pili and type 1 pili. AfrD was related to FedE of the F18 fimbrial operon of the E. coli strain that causes edema disease in pigs. AfrE was a novel protein. AfrR and AfrS are encoded upstream from AfrA, in the opposite orientation. AfrR is related to the AraC family of transcriptional regulators, and AfrR and AfrS interact to function in a novel mode of transcriptional activation of afrA. AF/R1 pili mediate the adherence to Peyer's patch M cells, ileal mucosa, and colonic mucosa in a rabbit model of diarrhea caused by enteropathogenic E. coli. Our observations will facilitate the further study of the phenomena of M-cell adherence.
Collapse
Affiliation(s)
- J R Cantey
- Ralph H. Johnson V. A. Medical Center and Infectious Diseases Division, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
49
|
Su P, Im H, Hsieh H, Kang'A S, Dunn NW. LlaFI, a type III restriction and modification system in Lactococcus lactis. Appl Environ Microbiol 1999; 65:686-93. [PMID: 9925601 PMCID: PMC91080 DOI: 10.1128/aem.65.2.686-693.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a type III restriction and modification (R/M) system, LlaFI, in Lactococcus lactis. LlaFI is encoded by a 12-kb native plasmid, pND801, harbored in L. lactis LL42-1. Sequencing revealed two adjacent open reading frames (ORFs). One ORF encodes a 680-amino-acid polypeptide, and this ORF is followed by a second ORF which encodes an 873-amino-acid polypeptide. The two ORFs appear to be organized in an operon. A homology search revealed that the two ORFs exhibited significant similarity to type III restriction (Res) and modification (Mod) subunits. The complete amino acid sequence of the Mod subunit of LlaFI was aligned with the amino acid sequences of four previously described type III methyltransferases. Both the N-terminal regions and the C-terminal regions of the Mod proteins are conserved, while the central regions are more variable. An S-adenosyl methionine (Ado-Met) binding motif (present in all adenine methyltransferases) was found in the N-terminal region of the Mod protein. The seven conserved helicase motifs found in the previously described type III R/M systems were found at the same relative positions in the LlaFI Res sequence. LlaFI has cofactor requirements for activity that are characteristic of the previously described type III enzymes. ATP and Mg2+ are required for endonucleolytic activity; however, the activity is not strictly dependent on the presence of Ado-Met but is stimulated by it. To our knowledge, this is the first type III R/M system that has been characterized not just in lactic acid bacteria but also in gram-positive bacteria.
Collapse
Affiliation(s)
- P Su
- Gist-Brocades Australia, Moorebank NSW 2170, Australia.
| | | | | | | | | |
Collapse
|
50
|
Lohrke SM, Day B, Kolli VS, Hancock R, Yuen JP, de Souza ML, Stacey G, Carlson R, Tong Z, Hur HG, Orf JH, Sadowsky MJ. The Bradyrhizobium japonicum noeD gene: a negatively acting, genotype-specific nodulation gene for soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:476-88. [PMID: 9612946 DOI: 10.1094/mpmi.1998.11.6.476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bradyrhizobium japonicum strain USDA 110 is restricted for nodulation by soybean genotype PI 417566. We previously reported the identification of a USDA 110 Tn5 mutant, strain D4.2-5, that had the ability to overcome nodulation restriction conditioned by PI 417566 (S. M. Lohrke, J. H. Orf, E. Martínez-Romero, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:2378-2383, 1995). In this study, we report the cloning and characterization of the negatively acting DNA region mutated in strain D4.2-5 that is involved in the genotype-specific nodulation of soybean. The Tn5 integration site was localized to a 5.2-kb EcoRI fragment isolated from wild-type USDA 110 genomic DNA. Saturation Tn5 mutagenesis of this 5.2-kb region and DNA homogenitization studies indicated that a 0.9-kb DNA region was involved in the genotype-specific nodulation of PI 417566. A single open reading frame (ORF) of 474 nucleotides, encoding a predicted protein of 158 amino acids, was identified within this region by DNA sequencing. This ORF was named noeD. Computer comparisons with available data bases revealed no significant similarities between the noeD DNA or predicted amino acid sequence and any known genes or their products. However, comparisons done with the region upstream of noeD revealed a high degree of similarity (about 76% similarity and 62% identity) to the N-terminal regions of the Rhizobium leguminosarum bv. viciae and R. meliloti nodM genes, which have been postulated to encode a glucosamine synthase. Southern hybridization analysis indicated that noeD is not closely linked to the main or auxiliary nodulation gene clusters in B. japonicum and that both nodulation-restricted and -unrestricted B. japonicum serogroup 110 strains contain a noeD homolog. High-performance liquid chromatography and fast atom bombardment-mass spectrometry analyses of the lipo-chitin oligosaccharide (LCO) nodulation signals produced by an noeD mutant showed a higher level of acetylation than that found with wild-type USDA 110. These results suggest that specific LCO signal molecules may be one of the factors influencing nodulation specificity in this symbiotic system.
Collapse
Affiliation(s)
- S M Lohrke
- Department of Soil, Water, and Climate, Biological Process Technology Institute, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|