1
|
The Role of Some Transcription Factors in Expression of GyrA and GyrB Following Exposure to Ciprofloxacin. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: GyrA and gyrB genes encode DNA gyrase subunits. This enzyme regulates DNA supercoiling. Inhibitors of this enzyme, such as ciprofloxacin, may change the level of supercoiling and the expression level of genes, including gyrA and gyrB. Objectives: The aims of this research were first to select some transcription factors, which regulate the expression of gyrA and gyrB. Secondly, the effect of these transcription factors was investigated on the expression of these genes in Escherichia coli mutants with different levels of resistance to ciprofloxacin in the presence and absence of these transcription factors. Methods: For this purpose, the online software called Promoter Analyzer in Virtual Footprint version 3 was used to find and select some transcription factors. The relative expression of genes was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Results: Theoretical results showed that CspA, FhlA, and SoxS transcription factors (with a score of match higher than 6), could be selected for further analysis. The expression of gyrA and gyrB genes remained unchanged in the presence and absence of CspA and FhlA transcription factors following exposure to the low amount of ciprofloxacin. However, SoxS transcription activator might have indirect effects on the expression of these genes, as soxS gene was overexpressed following treatment with a higher amount of ciprofloxacin. Conclusions: It is concluded that overexpression of gyrA and gyrB genes is not dependent on CspA and FhlA transcription factors, but may be dependent indirectly on regulatory proteins involved in oxidative stress following exposure to ciprofloxacin.
Collapse
|
2
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
3
|
Babu VMP, Sutton MD. A dnaN plasmid shuffle strain for rapid in vivo analysis of mutant Escherichia coli β clamps provides insight into the role of clamp in umuDC-mediated cold sensitivity. PLoS One 2014; 9:e98791. [PMID: 24896652 PMCID: PMC4045847 DOI: 10.1371/journal.pone.0098791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/07/2014] [Indexed: 12/05/2022] Open
Abstract
The E. coli umuDC gene products participate in two temporally distinct roles: UmuD2C acts in a DNA damage checkpoint control, while UmuD'2C, also known as DNA polymerase V (Pol V), catalyzes replication past DNA lesions via a process termed translesion DNA synthesis. These different roles of the umuDC gene products are managed in part by the dnaN-encoded β sliding clamp protein. Co-overexpression of the β clamp and Pol V severely blocked E. coli growth at 30°C. We previously used a genetic assay that was independent of the ability of β clamp to support E. coli viability to isolate 8 mutant clamp proteins (βQ61K, βS107L, βD150N, βG157S, βV170M, βE202K, βM204K and βP363S) that failed to block growth at 30°C when co-overexpressed with Pol V. It was unknown whether these mutant clamps were capable of supporting E. coli viability and normal umuDC functions in vivo. The goals of this study were to answer these questions. To this end, we developed a novel dnaN plasmid shuffle assay. Using this assay, βD150N and βP363S were unable to support E. coli viability. The remaining 6 mutant clamps, each of which supported viability, were indistinguishable from β+ with respect to umuDC functions in vivo. In light of these findings, we analyzed phenotypes of strains overexpressing either β clamp or Pol V alone. The strain overexpressing β+, but not those expressing mutant β clamps, displayed slowed growth irrespective of the incubation temperature. Moreover, growth of the Pol V-expressing strain was modestly slowed at 30°, but not 42°C. Taken together, these results suggest the mutant clamps were identified due to their inability to slow growth rather than an inability to interact with Pol V. They further suggest that cold sensitivity is due, at least in part, to the combination of their individual effects on growth at 30°C.
Collapse
Affiliation(s)
- Vignesh M. P. Babu
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Inokuchi H, Ito R, Sekiguchi T, Sekiguchi M. Search for proteins required for accurate gene expression under oxidative stress: roles of guanylate kinase and RNA polymerase. J Biol Chem 2013; 288:32952-62. [PMID: 24097971 DOI: 10.1074/jbc.m113.507772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In aerobically growing cells, in which reactive oxygen species are produced, the guanine base is oxidized to 8-oxo-7,8-dihydroguanine, which can pair with adenine as well as cytosine. This mispairing causes alterations in gene expression, and cells possess mechanisms to prevent such outcomes. In Escherichia coli, 8-oxo-7,8-dihydroguanine-related phenotypic suppression of lacZ amber is enhanced by mutations in genes related to the prevention of abnormal protein synthesis under oxidative stress. A genome-wide search for the genes responsible, followed by DNA sequence determination, revealed that specific amino acid changes in guanylate kinase and in the β and β' subunits of RNA polymerase cause elevated levels of phenotypic suppression, specifically under aerobic conditions. The involvement of the DnaB, DnaN, and MsbA proteins, which are involved in DNA replication and in preserving the membrane structure, was also noted. Interactions of these proteins with each other and also with other molecules may be important for preventing errors in gene expression.
Collapse
Affiliation(s)
- Hachiro Inokuchi
- From the Frontier Research Center and Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193 and
| | | | | | | |
Collapse
|
5
|
Douraid D, Ahmed L. SeqA, the Escherichia coli origin sequestration protein, can regulate the replication of the pBR322 plasmid. Plasmid 2010; 65:15-9. [PMID: 20875449 DOI: 10.1016/j.plasmid.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 11/25/2022]
Abstract
The pBR322 plasmid origin replication and oriC show similar responses to adenine methylation. Both are subject to sequestration by membrane fractions. In fact, like the host origin oriC, the RNA II promoter region of pBR322 is regulated by methylation of three GATC adenine methylation sites. The SeqA gene product acts in the negative control of oriC by sequestration. We suggest that the role of SeqA protein in sequestration is similar to oriC region DNA. Hence, SeqA recognize the methylation state of the pBR322RNA II promoter region by direct DNA binding in vitro. Using the pOC42 plasmid, we show that SeqA binds exclusively to the hemimethylated form of the replication origin of the pBR322 plasmid. In addition, we suggested that the SeqA protein could modulate periodically the initiation of replication of the pBR322 plasmid. The later could be fixed by its origin sequence, on a hemimethylated state, during the initiation of the replication.
Collapse
Affiliation(s)
- Daghfous Douraid
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia.
| | | |
Collapse
|
6
|
Correct timing of dnaA transcription and initiation of DNA replication requires trans translation. J Bacteriol 2009; 191:4268-75. [PMID: 19429626 DOI: 10.1128/jb.00362-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans translation pathway for protein tagging and ribosome release has been found in all bacteria and is required for proliferation and differentiation in many systems. Caulobacter crescentus mutants that lack the trans translation pathway have a defect in the cell cycle and do not initiate DNA replication at the correct time. To determine the molecular basis for this phenotype, effects on events known to be important for initiation of DNA replication were investigated. In the absence of trans translation, transcription from the dnaA promoter and an origin-proximal promoter involved in replication initiation is delayed. Characterization of the dnaA promoter revealed two cis-acting elements that have dramatic effects on dnaA gene expression. A 5' leader sequence in dnaA mRNA represses gene expression by >15-fold but does not affect the timing of dnaA expression. The second cis-acting element, a sequence upstream of the -35 region, affects both the amount of dnaA transcription and the timing of transcription in response to trans translation. Mutations in this promoter element eliminate the transcription delay and partially suppress the DNA replication phenotype in mutants lacking trans translation activity. These results suggest that the trans translation capacity of the cell is sensed through the dnaA promoter to control the timing of DNA replication initiation.
Collapse
|
7
|
Sutton MD, Duzen JM. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair (Amst) 2005; 5:312-23. [PMID: 16338175 DOI: 10.1016/j.dnarep.2005.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | |
Collapse
|
8
|
Maul RW, Sutton MD. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 2005; 187:7607-18. [PMID: 16267285 PMCID: PMC1280315 DOI: 10.1128/jb.187.22.7607-7618.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
9
|
Sutton MD, Duzen JM, Maul RW. Mutant forms of theEscherichia coliβ sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol 2005; 55:1751-66. [PMID: 15752198 DOI: 10.1111/j.1365-2958.2005.04500.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia colibeta sliding clamp is proposed to play an important role in regulating DNA polymerase traffic at the replication fork. As part of an ongoing effort to understand how organisms manage the actions of their multiple DNA polymerases, we examined the ability of several mutant forms of the beta clamp to function in DNA polymerase V- (pol V-) dependent translesion DNA synthesis (TLS) in vivo. Our results indicate that a dnaN159 strain, which expresses a temperature sensitive form of the beta clamp, was impaired for pol V-dependent TLS at the permissive temperature of 37 degrees C. This defect was complemented by a plasmid that expressed near-physiological levels of the wild-type clamp. Using a dnaN159 mutant strain, together with various plasmids expressing mutant forms of the clamp, we determined that residues H148 through R152, which comprise a portion of a solvent exposed loop, as well as position P363, which is located in the C-terminal tail of the beta clamp, are critically important for pol V-dependent TLS in vivo. In contrast, these same residues appear to be less critical for pol III-dependent replication. Taken together, these findings indicate that: (i) the beta clamp plays an essential role in pol V-dependent TLS in vivo and (ii) pol III and pol V interact with non-identical surfaces of the beta clamp.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
10
|
Sutton MD. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J Bacteriol 2004; 186:6738-48. [PMID: 15466025 PMCID: PMC522196 DOI: 10.1128/jb.186.20.6738-6748.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant beta clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant beta clamp protein (beta159) is impaired for interactions with the alpha catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the beta clamp might help to coordinate protein traffic at the replication fork.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main St., 140 Farber Hall, Buffalo, NY 14214.
| |
Collapse
|
11
|
Simmons LA, Kaguni JM. The DnaAcos allele of Escherichia coli: hyperactive initiation is caused by substitution of A184V and Y271H, resulting in defective ATP binding and aberrant DNA replication control. Mol Microbiol 2003; 47:755-65. [PMID: 12535074 DOI: 10.1046/j.1365-2958.2003.03333.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosomal DNA replication is regulated at the level of commitment to this biochemical pathway. In Escherichia coli, DnaA protein appears to regulate this process. A mutant form, DnaAcos, carrying four amino acid substitutions, is apparently defective in responding to regulatory signals, because it induces hyperactive initiation from the bacterial replication origin (oriC). In this report, the phenotype of hyperactive initiation is shown to be the result of two specific amino acid substitutions. One (A184V) immediately adjacent to a Walker A box (P loop motif) causes a defect in ATP binding (Carr and Kaguni, 1996, Mol Microbiol 20: 1307-1318). The second amino acid substitution (Y271H) appears to stabilize the activity of the mutant protein carrying the A184V substitution. The mutant protein carrying both amino acid substitutions (A184V + Y271H) is defective in modulating the frequency of initiation from oriC, as demonstrated by marker frequency analysis of oriC and a locus near the replication terminus. These results indicate that a defect in ATP binding results in aberrant control of DNA replication.
Collapse
Affiliation(s)
- Lyle A Simmons
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
12
|
Obita T, Iwura T, Su'etsugu M, Yoshida Y, Tanaka Y, Katayama T, Ueda T, Imoto T. Determination of the secondary structure in solution of the Escherichia coli DnaA DNA-binding domain. Biochem Biophys Res Commun 2002; 299:42-8. [PMID: 12435387 DOI: 10.1016/s0006-291x(02)02590-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DnaA protein binds specifically to a group of binding sites collectively called as DnaA boxes within the bacterial replication origin to induce local unwinding of duplex DNA. The DNA-binding domain of DnaA, domain IV, comprises the C-terminal 94 amino acid residues of the protein. We overproduced and purified a protein containing only this domain plus a methionine residue. This protein was stable as a monomer and maintained DnaA box-specific binding activity. We then analyzed its solution structure by CD spectrum and heteronuclear multi-dimensional NMR experiments. We established extensive assignments of the 1H, 13C, and 15N nuclei, and revealed by obtaining combined analyses of chemical shift index and NOE connectivities that DnaA domain IV contains six alpha-helices and no beta-sheets, consistent with results of CD analysis. Mutations known to reduce DnaA box-binding activity were specifically located in or near two of the alpha-helices. These findings indicate that the DNA-binding fold of DnaA domain IV is unique among origin-binding proteins.
Collapse
Affiliation(s)
- Takayuki Obita
- Department of Immunology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hunnicutt DW, Kempf MJ, McBride MJ. Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 2002; 184:2370-8. [PMID: 11948149 PMCID: PMC134979 DOI: 10.1128/jb.184.9.2370-2378.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae moves rapidly over surfaces by a process known as gliding motility. The mechanism of this form of motility is not known. Four genes that are required for F. johnsoniae gliding motility, gldA, gldB, gldD, and ftsX, have recently been described. GldA is similar to the ATP-hydrolyzing components of ATP binding cassette (ABC) transporters. Tn4351 mutagenesis was used to identify two additional genes, gldF and gldG, that are required for cell movement. gldF and gldG appear to constitute an operon, and a Tn4351 insertion in gldF was polar on gldG. pMK314, which carries the entire gldFG region, restored motility to each of the gldF and gldG mutants. pMK321, which expresses GldG but not GldF, restored motility to each of the gldG mutants but did not complement the gldF mutant. GldF has six putative membrane-spanning segments and is similar in sequence to channel-forming components of ABC transporters. GldG is similar to putative accessory proteins of ABC transporters. It has two apparent membrane-spanning helices, one near the amino terminus and one near the carboxy terminus, and a large intervening loop that is predicted to reside in the periplasm. GldF and GldG are involved in membrane localization of GldA, suggesting that GldA, GldF, and GldG may interact to form a transporter. F. johnsoniae gldA is not closely linked to gldFG, but the gldA, gldF, and gldG homologs of the distantly related gliding bacterium Cytophaga hutchinsonii are arranged in what appears to be an operon. The exact roles of F. johnsoniae GldA, GldF, and GldG in gliding are not known. Sequence similarities of GldA to components of other ABC transporters suggest that the Gld transporter may be involved in export of some material to the periplasm, outer membrane, or beyond.
Collapse
Affiliation(s)
- David W Hunnicutt
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
14
|
Strainic MG, Sullivan JJ, Collado-Vides J, deHaseth PL. Promoter interference in a bacteriophage lambda control region: effects of a range of interpromoter distances. J Bacteriol 2000; 182:216-20. [PMID: 10613884 PMCID: PMC94261 DOI: 10.1128/jb.182.1.216-220.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p(R) and p(RM) promoters of bacteriophage lambda direct transcription in divergent directions from start sites separated by 83 phosphodiester bonds. We had previously shown that the presence of an RNA polymerase at p(R) interfered with open complex formation at p(RM) and that this effect was alleviated by the deletion of 10 bp between the two promoters. Here we present a detailed characterization of the dependence of the interference on the interpromoter distance. It was found that the reduced interference between the two promoters is unique to the 10-bp deletion. The relief of interference was demonstrated to be due to the facilitation of a step subsequent to RNA polymerase binding to the p(RM) promoter. A model to explain these observations is proposed. A search of known Escherichia coli promoters identified three pairs of divergent promoters with similar separations to those investigated here.
Collapse
Affiliation(s)
- M G Strainic
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
15
|
Sutton MD, Carr KM, Vicente M, Kaguni JM. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 1998; 273:34255-62. [PMID: 9852089 DOI: 10.1074/jbc.273.51.34255] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of DNA replication at the Escherichia coli chromosomal origin occurs through an ordered series of events that depends first on the binding of DnaA protein, the replication initiator, to DnaA box sequences followed by unwinding of an AT-rich region. A step that follows is the binding of DnaB helicase at oriC so that it is properly positioned at each replication fork. We show that DnaA protein actively mediates the entry of DnaB at oriC. One region (amino acids 111-148) transiently binds to DnaB as determined by surface plasmon resonance. A second functional domain, possibly involving formation of a unique nucleoprotein structure, promotes the stable binding of DnaB during the initiation process and is inactivated in forming an intermediate termed the prepriming complex by removal of the N-terminal 62 residues. Based on similarities in the replication process between prokaryotes and eukaryotes, these results suggest that a similar mechanism may load the eukaryotic replicative helicase.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
16
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
17
|
Katayama T, Kubota T, Kurokawa K, Crooke E, Sekimizu K. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 1998; 94:61-71. [PMID: 9674428 DOI: 10.1016/s0092-8674(00)81222-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The beta subunit of DNA polymerase III is essential for negative regulation of the initiator protein, DnaA. DnaA inactivation occurs through accelerated hydrolysis of ATP bound to DnaA; the resulting ADP-DnaA fails to initiate replication. The ability of beta subunit to promote DnaA inactivation depends on its assembly as a sliding clamp on DNA and must be accompanied by a partially purified factor, IdaB protein. DnaA inactivation in the presence of IdaB and DNA polymerase III is further stimulated by DNA synthesis, indicating close linkage between initiator inactivation and replication. In vivo, DnaA predominantly takes on the ADP form in a beta subunit-dependent manner. Thus, the initiator is negatively regulated by action of the replicase, a mechanism that may be key to effective control of the replication cycle.
Collapse
Affiliation(s)
- T Katayama
- Department of Microbiology, Kyushu University Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
18
|
Villarroya M, Pérez-Roger I, Macián F, Armengod ME. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair. EMBO J 1998; 17:1829-37. [PMID: 9501104 PMCID: PMC1170530 DOI: 10.1093/emboj/17.6.1829] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions.
Collapse
Affiliation(s)
- M Villarroya
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomedicas, Valencia 46010, Spain
| | | | | | | |
Collapse
|
19
|
Abstract
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
20
|
Sutton MD, Kaguni JM. Threonine 435 of Escherichia coli DnaA protein confers sequence-specific DNA binding activity. J Biol Chem 1997; 272:23017-24. [PMID: 9287298 DOI: 10.1074/jbc.272.37.23017] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Escherichia coli DnaA protein, as a sequence-specific DNA binding protein, promotes the initiation of chromosomal replication by binding to four asymmetric 9-mer sequences termed DnaA boxes in oriC. Characterization of N-terminal, C-terminal, and internal in-frame deletion mutants identified residues near the C terminus of DnaA protein required for DNA binding. Furthermore, genetic and biochemical characterization of 11 missense mutations mapping within the C-terminal 89 residues indicated that they were defective in DNA binding. Detailed biochemical characterization of one mutant protein bearing a threonine to methionine substitution at position 435 (T435M) revealed that it retained only nonspecific DNA binding activity, suggesting that threonine 435 imparts specificity in binding. Finally, T435M was inactive on its own for in vitro replication of an oriC plasmid but was able to augment limiting levels of wild type DnaA protein, consistent with the proposal that not all of the DnaA monomers in the initial complex are bound specifically to oriC and that direct interaction occurs among monomers.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
21
|
Abstract
The Escherichia coli dnaA gene is required for replication of the bacterial chromosome. To identify residues critical for its replication activity, a method to select novel mutations was developed that relied on lytic growth of lambda from an inserted pSC101 replication origin. Replication from the lambda origin was inhibited by lysogen-encoded cI repressor. Replication from the pSC101 origin that resulted in lytic growth was dependent on active DnaA protein encoded by a plasmid in a host strain lacking the chromosomal dnaA gene. With this approach, a large collection of missense, nonsense, and a few internal deletion mutations were obtained. Nucleotide sequence analysis of the missense mutations indicated that 28 of 50 were unique. Of these, one was identical to the dnaA205 allele whereas the remainder are novel. These missense mutations were clustered into three regions, suggesting three functional domains of DnaA protein required for its replication activity. Many of the missense mutations mapping to the C-terminal 61 residues were inactive for replication from the pSC101 origin. These are defective in DNA binding. Mutations that mapped elsewhere were temperature-sensitive.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
22
|
Abstract
The region between the rpmH and dnaA genes contains five promoters that divergently express the ribosomal protein L34 and the proteins of the dnaA operon, including DnaA, the beta clamp of DNA polymerase III holoenzyme, and RecF. The DNA-binding protein Fis was shown by the band shift assay to bind near the rpmHp2 and dnaAp2 promoters and by DNase I footprinting to bind to a single site in the dnaAp2 promoter overlapping the -35 and spacer sequences. There were no observable differences in Fis affinity or the angle of bending induced by Fis between methylated and unmethylated DNA fragments containing the Fis binding site in the dnaAp2 promoter. Fis directly or indirectly represses the expression of DnaA protein and the beta clamp of DNA polymerase III. A fis null mutant containing a dnaA-lacZ in-frame fusion had twofold greater beta-galactosidase activity than a fis wild-type strain, and induced expression of Fis eliminated the increase in activity of the fusion protein. A two- to threefold increase in the levels of DnaA and beta clamp proteins was found in a fis null mutant by immunoblot gel analysis.
Collapse
Affiliation(s)
- J M Froelich
- Biology Department and Molecular Biology Institute, San Diego State University, California 92182-4614, USA
| | | | | |
Collapse
|
23
|
Taguchi Y, Tanaka K, Honda Y, Miao DM, Sakai H, Komano T, Bagdasarian M. A dnaA box can functionally substitute for the priming signals in the oriV of the broad host-range plasmid RSF1010. FEBS Lett 1996; 388:169-72. [PMID: 8690079 DOI: 10.1016/0014-5793(96)00558-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The initiation of replication from oriV RSF1010, the replication origin of the broad host-range plasmid RSF1010, depends on RepA (helicase), RepB' (primase), and RepC (initiator protein), encoded by RSF1010 itself, while this initiation event in E. coli is independent of dnaA, dnaB, dnaC, and dnaG [Scherzinger et al. (1984) Proc. Natl. Acad. Sci. USA 81, 654-658; Scholz et al. (1985) in: Plasmids in Bacteria, pp. 243-259, Plenum, New York; Haring and Scherzinger (1989) in: Promiscuous Plasmids of Gram-negative Bacteria, pp. 95-124, Academic Press, London; Scherzinger et al. (1991) Nucl. Acids Res. 19, 1203-1211]. We showed in this work that a newly constructed origin consisting of an oriV RSF1010 and a DnaA protein binding site, the dnaA box, inserted near oriV RSF1010 (oriV RSF1010-dnaA box) could function without RepB' primase, but required RepA and RepC. This oriV RsF1010-dnaA box could not replicate in a dnaA46 strain in which only RepA and RepC were supplied, even at a permissive temperature. These results indicate that an inserted dnaA box can functionally substitute for the RSF1010-specific ssi signals, the RepB' dependent priming signals in oriV RSF1010, and can direct a priming pathway different from the RSF1010-specific one, but related to DnaA protein.
Collapse
Affiliation(s)
- Y Taguchi
- Laboratory of Biochemistry, Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Sakakibara Y. Rifampin-induced initiation of chromosome replication in dnaR-deficient Escherichia coli cells. J Bacteriol 1996; 178:1242-7. [PMID: 8631698 PMCID: PMC177795 DOI: 10.1128/jb.178.5.1242-1247.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The dnaR130 mutant of Escherichia coli, which was thermosensitive in initiation of chromosome replication, was capable of thermoresistant DNA synthesis in the presence of rifampin at a low concentration that allowed almost normal RNA synthesis. The DNA synthesis in the presence of the drug depended on protein synthesis at the high temperature. The protein synthesis in the dnaR-deficient cells provided a potential for thermoresistant DNA synthesis to be induced at a high dose of the drug that almost completely prevented RNA synthesis. The induced synthesis was synchronously initiated from oriC and proceeded semiconservatively toward terC. The replication depended on the dnaA function, which was essential for normal initiation of replication from oriC. The capability for drug-induced replication was abolished by certain rifampin resistance mutations in the beta subunit of RNA polymerase. Thus, the drug can induce the dnaA-dependent initiation of replication in the dnaR-deficient cells through its effect on RNA polymerase. This result implies that the dnaR product is involved in the transcription obligatory for the initiation of replication of the bacterial chromosome.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
25
|
Hilbert H, Himmelreich R, Plagens H, Herrmann R. Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res 1996; 24:628-39. [PMID: 8604303 PMCID: PMC145699 DOI: 10.1093/nar/24.4.628] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To sequence the entire 800 kilobase pair genome of the bacterium Mycoplasma pneumoniae, a plasmid library was established with contained the majority of the EcoR1 fragments from M.pneumoniae. The EcoR1 fragments were subcloned from an ordered cosmid library comprising the complete M.pneumoniae genome. Individual plasmid clones were sequenced in an ordered fashion mainly by primer walking. We report here the initial results from the sequence analysis of -56 kb comprising the dnaA region as a potential origin of replication, the ATPase operon and a region coding for a cluster of ribosomal protein genes. The data were compared with the corresponding genes/operons from Bacillus subtilis, Escherichia coli, Mycoplasma capricolum and Mycoplasma gallisepticum.
Collapse
Affiliation(s)
- H Hilbert
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
26
|
Paz-Elizur T, Skaliter R, Blumenstein S, Livneh Z. β*, a UV-inducible Smaller Form of the β Subunit Sliding Clamp of DNA Polymerase III of Escherichia coli. J Biol Chem 1996. [DOI: 10.1074/jbc.271.5.2482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Skaliter R, Paz-Elizur T, Livneh Z. A Smaller Form of the Sliding Clamp Subunit of DNA Polymerase III Is Induced by UV Irradiation in Escherichia coli. J Biol Chem 1996. [DOI: 10.1074/jbc.271.5.2478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Sutton MD, Kaguni JM. Novel alleles of the Escherichia coli dnaA gene are defective in replication of pSC101 but not of oriC. J Bacteriol 1995; 177:6657-65. [PMID: 7592447 PMCID: PMC177522 DOI: 10.1128/jb.177.22.6657-6665.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Five novel alleles of the Escherichia coli dnaA gene that were temperature sensitive in maintenance of pSC101, a plasmid that is dependent on this gene for replication, were isolated. Nucleotide sequence analysis revealed that four of the five alleles arose from single base substitutions, whereas the fifth contained three base substitutions, two of which were silent. Whereas all five alleles were temperature sensitive in vivo for pSC101 maintenance, genetic and biochemical characterization indicated that only two were defective in replication from the chromosomal origin, oriC. As previously characterized mutations are defective in replication for both pSC101 and oriC, the dnaA mutations specifically defective in pSC101 maintenance represent a novel class. We speculate that one or more of these pSC101-specific mutants are defective in interaction with pSC101 RepA protein, which is also required for initiation of plasmid DNA replication.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
29
|
Kelman Z, O'Donnell M. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res 1995; 23:3613-20. [PMID: 7478986 PMCID: PMC307255 DOI: 10.1093/nar/23.18.3613] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The remarkable processivity of cellular replicative DNA polymerases derive their tight grip to DNA from a ring-shaped protein that encircles DNA and tethers the polymerase to the chromosome. The crystal structures of prototypical 'sliding clamps' of prokaryotes (beta subunit) and eukaryotes (PCNA) are ring shaped proteins for encircling DNA. Although beta is a dimer and PCNA is a trimer, their structures are nearly superimposable. Even though they are not hexamers, the sliding clamps have a pseudo 6-fold symmetry resulting from three globular domains comprising each beta monomer and two domains comprising each PCNA monomer. These domains have the same chain fold and are nearly identical in three-dimensions. The amino acid sequences of 11 beta and 13 PCNA proteins from different organisms have been aligned and studied to gain further insight into the relation between the structure and function of these sliding clamps. Furthermore, a putative embryonic form of PCNA is the size of beta and thus may encircle DNA as a dimer like the prokaryotic clamps.
Collapse
Affiliation(s)
- Z Kelman
- Microbiology Department, Hearst Research Foundation, New York, NY, USA
| | | |
Collapse
|
30
|
Richter S, Messer W. Genetic structure of the dnaA region of the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol 1995; 177:4245-51. [PMID: 7635812 PMCID: PMC177169 DOI: 10.1128/jb.177.15.4245-4251.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have cloned and sequenced the dnaA region of Synechocystis sp. strain PCC6803, a bacterium with a light-dependent cell cycle. The dnaA gene product, DnaA, is the central factor for replication initiation in bacteria. The deduced amino acid sequence of the protein encoded by the cyanobacterial dnaA gene is 45% identical to DnaA of Bacillus subtilis and fits very well into the homology pattern of the known eubacterial DnaA proteins. The genetic environment of the Synechocystis sp. strain PCC6803 dnaA gene is completely different from the one in other eubacteria. An open reading frame of unknown function, orf134, was detected upstream of dnaA. The purT gene homolog encoding the glycinamide ribonucleotide transformylase T starts about 200 bp away from this open reading frame in the opposite direction. Downstream of the dnaA gene we detected the start of the psbDC operon, which codes for the photosystem II reaction center proteins D2 and CP43 that are involved in the positioning of chlorophyll a.
Collapse
Affiliation(s)
- S Richter
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany
| | | |
Collapse
|
31
|
Ginés-Candelaria E, Blinkova A, Walker JR. Mutations in Escherichia coli dnaA which suppress a dnaX(Ts) polymerization mutation and are dominant when located in the chromosomal allele and recessive on plasmids. J Bacteriol 1995; 177:705-15. [PMID: 7836305 PMCID: PMC176647 DOI: 10.1128/jb.177.3.705-715.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Extragenic suppressor mutations which had the ability to suppress a dnaX2016(Ts) DNA polymerization defect and which concomitantly caused cold sensitivity have been characterized within the dnaA initiation gene. When these alleles (designated Cs, Sx) were moved into dnaX+ strains, the new mutants became cold sensitive and phenotypically were initiation defective at 20 degrees C (J.R. Walker, J.A. Ramsey, and W.G. Haldenwang, Proc. Natl. Acad. Sci. USA 79:3340-3344, 1982). Detailed localization by marker rescue and DNA sequencing are reported here. One mutation changed codon 213 from Ala to Asp, the second changed Arg-432 to Leu, and the third changed codon 435 from Thr to Lys. It is striking that two of the three spontaneous mutations occurred in codons 432 and 435; these codons are within a very highly conserved, 12-residue region (K. Skarstad and E. Boye, Biochim. Biophys. Acta 1217:111-130, 1994; W. Messer and C. Weigel, submitted for publication) which must be critical for one of the DnaA activities. The dominance of wild-type and mutant alleles in both initiation and suppression activities was studied. First, in initiation function, the wild-type allele was dominant over the Cs, Sx alleles, and this dominance was independent of location. That is, the dnaA+ allele restored growth to dnaA (Cs, Sx) strains at 20 degrees C independently of which allele was present on the plasmid. The dnaA (Cs, Sx) alleles provided initiator function at 39 degrees C and were dominant in a dnaA(Ts) host at that temperature. On the other hand, suppression was dominant when the suppressor allele was chromosomal but recessive when it was plasmid borne. Furthermore, suppression was not observed when the suppressor allele was present on a plasmid and the chromosomal dnaA was a null allele. These data suggest that the suppressor allele must be integrated into the chromosome, perhaps at the normal dnaA location. Suppression by dnaA (Cs, Sx) did not require initiation at oriC; it was observed in strains deleted of oriC and which initiated at an integrated plasmid origin.
Collapse
|
32
|
The mutant DnaAcos protein which overinitiates replication of the Escherichia coli chromosome is inert to negative regulation for initiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31757-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Mizushima T, Tomura A, Shinpuku T, Miki T, Sekimizu K. Loss of flagellation in dnaA mutants of Escherichia coli. J Bacteriol 1994; 176:5544-6. [PMID: 8071236 PMCID: PMC196746 DOI: 10.1128/jb.176.17.5544-5546.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A dnaA46 mutant of Escherichia coli showed loss of motility at 37 degrees C, a permissive temperature for cell growth of this mutant. Other dnaA mutations near the middle of the gene also caused an immotile phenotype. The amount of flagellin was much less in the dnaA46 mutant than in the wild-type control, as was the promoter activity. DnaA protein may play an important role in expression of the fliC gene.
Collapse
Affiliation(s)
- T Mizushima
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
34
|
Macián F, Pérez-Roger I, Armengod ME. An improved vector system for constructing transcriptional lacZ fusions: analysis of regulation of the dnaA, dnaN, recF and gyrB genes of Escherichia coli. Gene X 1994; 145:17-24. [PMID: 8045420 DOI: 10.1016/0378-1119(94)90317-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We describe a new vector system for the in vitro construction of transcriptional fusions to the lacZ gene, which is expressed from the translational start signals of galK. The galK ribosome-binding site (RBS) and its natural preceding region ensure a constant efficiency for lacZ translation and, thus, the beta-galactosidase (beta Gal) production of a given fusion is directly proportional to the in vivo transcriptional activity of the inserted DNA fragment. Single-copy lambda prophage versions of multicopy constructs can be made by in vivo recombination. We use this system to compare the transcriptional activities of the promoters present in the dnaA-dnaN-recF-gyrB cluster. The order of strength of these promoters is gyrB > dnaA > recF > dnaN. It is assumed that gyrB belongs to the dnaA-dnaN-recF operon, because the short recF-gyrB intercistronic region does not contain a terminator. By using this new vector system, we have detected strong termination signals within recF that are functional even when recF is translated at its normal rate. The low level of transcription coming to the end of recF, and the highest activity of the gyrB promoter, as well as results obtained with several gyrB::lacZ translational fusions, support the conclusion that gyrB is predominantly expressed from its own promoter under standard growth conditions. Finally, we have found that transcription from the dnaA promoters is constant at different growth rates. This supports the idea that autoregulation of the dnaA gene is responsible for the coupling of the DnaA protein synthesis to cell mass increase, and accumulation of DnaA protein governs the initiation of chromosome replication.
Collapse
Affiliation(s)
- F Macián
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain
| | | | | |
Collapse
|
35
|
Tadmor Y, Bergstein M, Skaliter R, Shwartz H, Livneh Z. Beta subunit of DNA polymerase III holoenzyme is induced upon ultraviolet irradiation or nalidixic acid treatment of Escherichia coli. Mutat Res 1994; 308:53-64. [PMID: 7516486 DOI: 10.1016/0027-5107(94)90198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exposure of Escherichia coli to UV irradiation or nalidixic acid, which induce both the SOS and heat shock responses, led to a 3-4-fold increase in the amount of the beta subunit of DNA polymerase III holoenzyme, as assayed by Western blot analysis using anti-beta antibodies. Such an induction was observed also in a delta rpoH mutant lacking the heat shock-specific sigma 32 subunit of RNA polymerase, but it was not observed in recA13 or lexA3 mutants, in which the SOS response cannot be induced. Mapping of transcription initiation sites of the dnaN gene, encoding the beta subunit, using the S1 nuclease protection assay showed essentially no induction of transcription upon UV irradiation, indicating that induction is regulated primarily at the post-transcriptional level. Analysis of translational gene fusions of the dnaN gene, encoding the beta subunit, to the lacZ reporter gene showed induction of beta-galactosidase activity upon UV irradiation of cells harboring the fusion plasmids. Elimination of a 5' flanking DNA sequence in which the dnaN promoters P1 and P2 were located, did not affect the UV inducibility of the gene fusions. Thus, element(s) present from P3 downstream were sufficient for the UV induction. The induction of the dnaN-lacZ gene fusions was dependent on the recA and lexA gene products, but not on the rpoH gene product, in agreement with the immunoblot analysis. The dependence of dnaN induction on the SOS regulators was not mediated via classical repression by the LexA repressor, since the dnaN promoter does not contain a sequence homologous to the LexA binding site, and dnaN mRNA was not inducible by UV light. This suggests that SOS control may be imposed indirectly, by a post-transcriptional mechanism. The increased amount of the beta subunit is needed, most likely, for increased replication and repair activities in cells which have been exposed to UV radiation.
Collapse
Affiliation(s)
- Y Tadmor
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
36
|
Ye F, Renaudin J, Bové JM, Laigret F. Cloning and sequencing of the replication origin (oriC) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids. Curr Microbiol 1994; 29:23-9. [PMID: 7764984 DOI: 10.1007/bf01570187] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 5.6-kbp fragment of Spiroplasma citri DNA containing the dnaA gene has been cloned and sequenced. Nucleotide sequence analysis shows that this fragment harbors the genes for the replication initiator protein (dnaA), the beta subunit of DNA polymerase III (dnaN), and the DNA gyrase subunits A and B (gyrA and gyrB). The arrangement of these genes, dnaA-dnaN-gyrB-gyrA, is similar to that found in all Gram-positive bacterial genomes studied so far, except that no recF gene was found between dnaN and gyrB. Several DnaA-box consensus sequences were found upstream of dnaA and in the dnaA-dnaN intergenic region. The dnaA region with the flanking DnaA-boxes and the tetracycline resistance determinant, tetM, were linked into a circular recombinant DNA. This DNA was able to replicate autonomously when introduced by electroporation into S. citri cells. These experiments show that the dnaA region with the DnaA-boxes is the origin of replication of S. citri and can be used to construct gene vectors.
Collapse
Affiliation(s)
- F Ye
- Laboratory of Cellular and Molecular Biology, National Institute of Agronomy Research, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
37
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
38
|
Suzuki K, Miyata M, Fukumura T. Comparison of the conserved region in the dnaA gene from three mollicute species. FEMS Microbiol Lett 1993; 114:229-33. [PMID: 8282191 DOI: 10.1111/j.1574-6968.1993.tb06578.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polymerase chain reaction was carried out to amplify the conserved region (789 bp in the case of Mycoplasma capricolum) of the dnaA gene (1350 bp in the case of M. capricolum) of 15 representatives of the class Mollicutes using degenerate oligonucleotide primers. The dnaA gene fragments were amplified from M. mycoides subsp. capri, Spiroplasma apis and S. citri. The amino acid sequences deduced from the nucleotide sequences of the amplified fragments showed very low similarities to those of the corresponding regions of four walled bacteria. The values of similarity between any two of the three mollicute species were lower than those between any two of the four walled bacteria.
Collapse
Affiliation(s)
- K Suzuki
- Department of Biology, Faculty of Science, Osaka City University, Japan
| | | | | |
Collapse
|
39
|
Carter JR, Franden MA, Lippincott JA, McHenry CS. Identification, molecular cloning and characterization of the gene encoding the chi subunit of DNA polymerase III holoenzyme of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:399-408. [PMID: 8246893 DOI: 10.1007/bf00284693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have identified a previously reported open reading frame (ORF13) that maps between pepA and valS at 96.6 centisomes of the Escherichia coli genome as the structural gene for the chi subunit of DNA polymerase III holoenzyme. This conclusion is supported by a perfect match of the amino-terminal 24 residues of chi with the DNA sequence of ORF13 and a demonstration that ORF13 directs expression of a protein that co-migrates with authentic chi on SDS-polyacrylamide gels. ORF13, designated holC, was isolated from the E. coli chromosome and inserted into a tac promoter-based expression plasmid to direct production of the chi subunit to 5-7% of the total soluble protein. The 3' end of holC was sequenced to resolve discrepancies between two published versions.
Collapse
Affiliation(s)
- J R Carter
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver 80262
| | | | | | | |
Collapse
|
40
|
Zuerner RL, Herrmann JL, Saint Girons I. Comparison of genetic maps for two Leptospira interrogans serovars provides evidence for two chromosomes and intraspecies heterogeneity. J Bacteriol 1993; 175:5445-51. [PMID: 7690025 PMCID: PMC206600 DOI: 10.1128/jb.175.17.5445-5451.1993] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic maps were constructed for Leptospira interrogans serovars icterohaemorrhagiae and pomona. Previously we independently constructed physical maps of the genomes for these two serovars. The genomes of both serovars consist of a large replicon (4.4 to 4.6 Mb) and a small replicon (350 kb). Genes were localized on the physical maps by using Southern blot analysis with specific probes. Among the probes used were genes encoding a variety of essential enzymes and genes usually found near bacterial chromosomal replication origins. Most of the essential genes are on the larger replicon of each serovar. However, the smaller replicons of both serovars contain the asd gene. The asd gene encodes aspartate beta-semialdehyde dehydrogenase, an enzyme essential in amino acid and cell wall biosyntheses. The finding that both L. interrogans replicons contain essential genes suggests that both replicons are chromosomes. Comparison of the genetic maps of the larger replicons of the two serovars showed evidence of large rearrangements. These data show that there is considerable intraspecies heterogeneity in L. interrogans.
Collapse
Affiliation(s)
- R L Zuerner
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010
| | | | | |
Collapse
|
41
|
Sakakibara Y. Cooperation of the prs and dnaA gene products for initiation of chromosome replication in Escherichia coli. J Bacteriol 1993; 175:5559-65. [PMID: 8396119 PMCID: PMC206612 DOI: 10.1128/jb.175.17.5559-5565.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new Escherichia coli mutant allele, named dnaR, that causes thermosensitive initiation of chromosome replication has been identified to be an allele of the prs gene, the gene for phosphoribosylpyrophosphate synthetase (Y. Sakakibara, J. Mol. Biol. 226:979-987, 1992; Y. Sakakibara, J. Mol. Biol. 226:989-996, 1992). The dnaR mutant became temperature resistant by acquisition of a mutation in the dnaA gene that did not affect the intrinsic activity for the initiation of replication. The suppressor mutant was capable of initiating replication from oriC at a high temperature restrictive for the dnaR single mutant. The thermoresistant DNA synthesis was inhibited by the presence of the wild-type dnaA allele at a high but not a low copy number. The synthesis was also inhibited by an elevated dose of a mutant dnaR allele retaining dnaR activity. Therefore, thermoresistant DNA synthesis in the suppressor mutant was dependent on both the dnaA and the dnaR functions. On the basis of these results, I conclude that the initiation of chromosome replication requires cooperation of the prs and dnaA products.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry and Cellular Biology, National Institute of Health, Tokyo, Japan
| |
Collapse
|
42
|
Carter JR, Franden MA, Aebersold R, McHenry CS. Identification, isolation, and characterization of the structural gene encoding the delta' subunit of Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 1993; 175:3812-22. [PMID: 8509334 PMCID: PMC204798 DOI: 10.1128/jb.175.12.3812-3822.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene encoding the delta' subunit of DNA polymerase III holoenzyme, designated holB, was cloned by a strategy in which peptide sequence was used to derive a DNA hybridization probe. The gene maps to 24.95 centisomes of the chromosome. Sequencing of holB revealed a 1,002-bp open reading frame predicted to produce a 36,936-Da protein. The gene has a ribosome-binding site and promoter that are highly similar to the consensus sequences and is flanked by two potential open reading frames. Protein sequence analysis of delta' revealed a high degree of similarity to the dnaX gene products of Escherichia coli and Bacillus subtilis, including one stretch of 10 identical amino acid residues. A lesser degree of similarity to the gene 44 protein of bacteriophage T4 and the 40-kDa protein of the A1 complex (replication factor C) of HeLa cells was seen. The gene, when placed into a tac promoter-based expression plasmid, directed expression of two proteins of similar size. By immunodetection with anti-holoenzyme immunoglobulin G, both proteins are judged to be products of holB.
Collapse
Affiliation(s)
- J R Carter
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver, Colorado 80262
| | | | | | | |
Collapse
|
43
|
Abstract
An updated compilation of 300 E. coli mRNA promoter sequences is presented. For each sequence the most recent relevant paper was checked, to verify the location of the transcriptional start position as identified experimentally. We comment on the reliability of the sequence databanks and analyze the conservation of known promoter features in the current compilation. This database is available by E-mail.
Collapse
Affiliation(s)
- S Lisser
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
44
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
45
|
Old IG, MacDougall J, Saint Girons I, Davidson BE. Mapping of genes on the linear chromosome of the bacteriumBorrelia burgdorferi: Possible locations for its origin of replication. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05575.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Carter JR, Franden MA, Aebersold R, McHenry CS. Molecular cloning, sequencing, and overexpression of the structural gene encoding the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 1992; 174:7013-25. [PMID: 1400251 PMCID: PMC207382 DOI: 10.1128/jb.174.21.7013-7025.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using an oligonucleotide hybridization probe, we have mapped the structural gene for the delta subunit of Escherichia coli DNA polymerase III holoenzyme to 14.6 centisomes of the chromosome. This gene, designated holA, was cloned and sequenced. The sequence of holA matches precisely four amino acid sequences obtained for the amino terminus of delta and three internal tryptic peptides. A holA-overproducing plasmid that directs the expression of delta up to 4% of the soluble protein was constructed. Sequence analysis of holA revealed a 1,029-bp open reading frame that encodes a protein with a predicted molecular mass of 38,703 Da. holA may reside downstream of rlpB in an operon, perhaps representing yet another link between structural genes for the DNA polymerase III holoenzyme and proteins involved in membrane biogenesis. These and other features are discussed in terms of genetic regulation of delta-subunit synthesis.
Collapse
Affiliation(s)
- J R Carter
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
47
|
Sakakibara Y. Novel Escherichia coli mutant, dnaR, thermosensitive in initiation of chromosome replication. J Mol Biol 1992; 226:979-87. [PMID: 1518065 DOI: 10.1016/0022-2836(92)91046-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A newly isolated Escherichia coli mutant thermosensitive in DNA synthesis had an allele named dnaR130, which was located at 26.3 minutes on the genetic map. The mutant was defective in initiation of chromosome replication but not in propagation at a high temperature. This mutant was capable of growing in the absence of the rnh function at the high temperature by means of a dnaA-independent replication mechanism. In the mutant exposed to the high temperature, an oriC plasmid was able to replicate, although at a lower rate than at the low temperature. The plasmid replication at the high temperature depended on the dnaA function essential for the initiation of replication from oriC. The mutant lacking the rnh function persistently maintained the oriC plasmid at the high temperature in a dnaA-dependent manner. Thus, the dnaR function was required for initiation of replication of the bacterial chromosome from oriC but not the oriC plasmid. This result reveals that a dnaR-dependent initiation mechanism that is dispensable for oriC plasmid replication operates in the bacterial chromosome replication.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Chemistry, National Institute of Health, Tokyo, Japan
| |
Collapse
|
48
|
Hansen FG, Koefoed S, Atlung T. Cloning and nucleotide sequence determination of twelve mutant dnaA genes of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:14-21. [PMID: 1495477 DOI: 10.1007/bf00272340] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasmids carrying different regions of the wild-type dnaA gene were used for marker rescue analysis of the temperature sensitivity of twelve strains carrying dnaA mutations. The different dnaA(Ts) mutations could be unambiguously located within specific regions of the dnaA gene. The mutant dnaA genes were cloned on pBR322-derived plasmids and on nucleotide sequencing by dideoxy chain termination the respective mutations were determined using M13 clones carrying the relevant parts of the mutant dnaA gene. Several of the mutant dnaA genes were found to have two mutations. The dnaA5, dnaA46, dnaA601, dnaA602, dnaA604, and dnaA606 genes all had identical mutations corresponding to an amino acid change from alanine to valine at amino acid 184 in the DnaA protein, close to the proposed ATP binding site, but all carried one further mutation giving rise to an amino acid substitution. The dnaA508 gene also had two mutations, whereas dnaA167, dnaA203, dnaA204, dnaA205, and dnaA211 each had only one. The pairs dnaA601/602, dnaA604/606, and dnaA203/204 were each found to have identical mutations. Plasmids carrying the different dnaA mutant genes intact were introduced into the respective dnaA mutant strains. Surprisingly, these homopolyploid mutant strains were found to be temperature resistant in most cases, indicating that a high intracellular concentration of the mutant DnaA protein can compensate for the decreased activity of the protein.
Collapse
Affiliation(s)
- F G Hansen
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | |
Collapse
|
49
|
Kong XP, Onrust R, O'Donnell M, Kuriyan J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992; 69:425-37. [PMID: 1349852 DOI: 10.1016/0092-8674(92)90445-i] [Citation(s) in RCA: 621] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of the beta subunit (processivity factor) of DNA polymerase III holoenzyme has been determined at 2.5 A resolution. A dimer of the beta subunit (M(r) = 2 x 40.6 kd, 2 x 366 amino acid residues) forms a ring-shaped structure lined by 12 alpha helices that can encircle duplex DNA. The structure is highly symmetrical, with each monomer containing three domains of identical topology. The charge distribution and orientation of the helices indicate that the molecule functions by forming a tight clamp that can slide on DNA, as shown biochemically. A potential structural relationship is suggested between the beta subunit and proliferating cell nuclear antigen (PCNA, the eukaryotic polymerase delta [and epsilon] processivity factor), and the gene 45 protein of the bacteriophage T4 DNA polymerase.
Collapse
Affiliation(s)
- X P Kong
- Laboratory of Molecular Biophysics, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
50
|
Kranz RG, Beckman DL, Foster-Hartnett D. DNA gyrase activities fromRhodobacter capsulatus: analysis of target(s) of coumarins and cloning of thegyrBlocus. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05035.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|