1
|
Göse M, Magill EE, Hughes-Games A, Shaw SJ, Diffin FM, Rawson T, Nagy Z, Seidel R, Szczelkun MD. Short-range translocation by a restriction enzyme motor triggers diffusion along DNA. Nat Chem Biol 2024; 20:689-698. [PMID: 38167920 PMCID: PMC11142916 DOI: 10.1038/s41589-023-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis. Our data show that the helicase-like domain has multiple roles. First, this domain stabilizes initial DNA interactions alongside the methyltransferase subunits. Second, it causes environmental changes in the flipped adenine base following hydrolysis of the first ATP. Finally, it remodels nucleoprotein interactions via constrained translocation of a ∼ 5 to 22-bp double stranded DNA loop. Initiation of DNA sliding requires 8-15 bp of DNA downstream of the motor, corresponding to the site of nuclease domain binding. Our data unify previous contradictory communication models for Type III enzymes.
Collapse
Affiliation(s)
- Martin Göse
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Emma E Magill
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Alex Hughes-Games
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Steven J Shaw
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Tara Rawson
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Zsofia Nagy
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Maldonado-Contreras A, Mane SP, Zhang XS, Pericchi L, Alarcón T, Contreras M, Linz B, Blaser MJ, Domínguez-Bello MG. Phylogeographic evidence of cognate recognition site patterns and transformation efficiency differences in H. pylori: theory of strain dominance. BMC Microbiol 2013; 13:211. [PMID: 24050390 PMCID: PMC3849833 DOI: 10.1186/1471-2180-13-211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Helicobacter pylori has diverged in parallel to its human host, leading to distinct phylogeographic populations. Recent evidence suggests that in the current human mixing in Latin America, European H. pylori (hpEurope) are increasingly dominant at the expense of Amerindian haplotypes (hspAmerind). This phenomenon might occur via DNA recombination, modulated by restriction-modification systems (RMS), in which differences in cognate recognition sites (CRS) and in active methylases will determine direction and frequency of gene flow. We hypothesized that genomes from hspAmerind strains that evolved from a small founder population have lost CRS for RMS and active methylases, promoting hpEurope's DNA invasion. We determined the observed and expected frequencies of CRS for RMS in DNA from 7 H. pylori whole genomes and 110 multilocus sequences. We also measured the number of active methylases by resistance to in vitro digestion by 16 restriction enzymes of genomic DNA from 9 hpEurope and 9 hspAmerind strains, and determined the direction of DNA uptake in co-culture experiments of hspAmerind and hpEurope strains. RESULTS Most of the CRS were underrepresented with consistency between whole genomes and multilocus sequences. Although neither the frequency of CRS nor the number of active methylases differ among the bacterial populations (average 8.6 ± 2.6), hspAmerind strains had a restriction profile distinct from that in hpEurope strains, with 15 recognition sites accounting for the differences. Amerindians strains also exhibited higher transformation rates than European strains, and were more susceptible to be subverted by larger DNA hpEurope-fragments than vice versa. CONCLUSIONS The geographical variation in the pattern of CRS provides evidence for ancestral differences in RMS representation and function, and the transformation findings support the hypothesis of Europeanization of the Amerindian strains in Latin America via DNA recombination.
Collapse
|
3
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
4
|
Tóth J, van Aelst K, Salmons H, Szczelkun MD. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity. Nucleic Acids Res 2012; 40:6752-64. [PMID: 22523084 PMCID: PMC3413136 DOI: 10.1093/nar/gks328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’).
Collapse
Affiliation(s)
- Júlia Tóth
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
5
|
Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 2008; 74:6970-9. [PMID: 18820072 DOI: 10.1128/aem.01088-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.
Collapse
|
6
|
Mitra K, Ghosh AN. Characterization of Vibrio cholerae O1 ElTor typing phage S5. Arch Virol 2007; 152:1775-86. [PMID: 17610123 DOI: 10.1007/s00705-007-1021-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 06/05/2007] [Indexed: 11/26/2022]
Abstract
S5 (ATCC No. 51352-B2), a Vibrio cholerae O1 ElTor typing phage was characterized. The growth characteristics and inactivation kinetics (thermal, UV and pH) of this lytic phage were investigated. Phage morphology was examined by electron microscopy and was classified as belonging to the family Podoviridae. The S5 phage genome is shown to be a linear double-stranded 39-kb-long DNA as determined by electron microscopy and restriction digestion. Partial denaturation maps were constructed and were used to show that the DNA is non-permuted and terminally redundant. The replication origin of this T7-like phage was visualized by electron microscopy. The polarity of packaging of S5 DNA in the phage head was determined. SDS-PAGE of phage S5 shows two major structural polypeptides of 50 and 42 kDa. A 3D structure of the phage head was reconstructed at a resolution of 37 A using Cryo-EM and a single-particle reconstruction technique.
Collapse
Affiliation(s)
- K Mitra
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
7
|
Sears A, Peakman LJ, Wilson GG, Szczelkun MD. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii. Nucleic Acids Res 2005; 33:4775-87. [PMID: 16120967 PMCID: PMC1192830 DOI: 10.1093/nar/gki787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A new Type III restriction endonuclease designated PstII has been purified from Providencia stuartii. PstII recognizes the hexanucleotide sequence 5'-CTGATG(N)(25-26/27-28)-3'. Endonuclease activity requires a substrate with two copies of the recognition site in head-to-head repeat and is dependent on a low level of ATP hydrolysis ( approximately 40 ATP/site/min). Cleavage occurs at just one of the two sites and results in a staggered cut 25-26 nt downstream of the top strand sequence to generate a two base 5'-protruding end. Methylation of the site occurs on one strand only at the first adenine of 5'-CATCAG-3'. Therefore, PstII has characteristic Type III restriction enzyme activity as exemplified by EcoPI or EcoP15I. Moreover, sequence asymmetry of the PstII recognition site in the T7 genome acts as an historical imprint of Type III restriction activity in vivo. In contrast to other Type I and III enzymes, PstII has a more relaxed nucleotide specificity and can cut DNA with GTP and CTP (but not UTP). We also demonstrate that PstII and EcoP15I cannot interact and cleave a DNA substrate suggesting that Type III enzymes must make specific protein-protein contacts to activate endonuclease activity.
Collapse
Affiliation(s)
| | | | | | - Mark D. Szczelkun
- To whom correspondence should be addressed. Tel: +44 0 117 928 7439; Fax: +44 0 117 928 8274;
| |
Collapse
|
8
|
Pajunen MI, Elizondo MR, Skurnik M, Kieleczawa J, Molineux IJ. Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J Mol Biol 2002; 319:1115-32. [PMID: 12079351 DOI: 10.1016/s0022-2836(02)00384-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the complete genome sequence (38,208 bp) of bacteriophage T3 and provide a bioinformatic comparative analysis with other completely sequenced members of the T7 group of phages. This comparison suggests that T3 has evolved from a recombinant between a T7-like coliphage and a yersiniophage. To assess this, recombination between T7 and the Yersinia enterocolitica serotype O:3 phage phiYeO3-12 was accomplished in vivo; coliphage progeny from this cross were selected that had many biological properties of T3. This represents the first experimentally observed recombination between lytic phages whose normal hosts are different bacterial genera.
Collapse
Affiliation(s)
- Maria I Pajunen
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Finland.
| | | | | | | | | |
Collapse
|
9
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
10
|
Abstract
Halophage HF2 is a lytic, broad-host-range bacteriophage of the extremely halophilic domain Archaea. It has a 79.7-kb double-stranded DNA genome which is linear, contains no modified nucleotides, and is not susceptible to cleavage by many type II restriction endonucleases. This insensitivity is attributed to selection against palindromic restriction sites, a commonly observed feature of broad-host-range phages. Interestingly, enzymes that did cut the genome recognized AT-rich sites, and five such enzymes, DraI, AseI, HpaI, HindIII, and SspI, were used to construct a physical map of the genome. Southern hybridization experiments used to order fragments on the map indicated homologies between the phage termini, and subsequent sequence analysis showed that HF2 possessed 306-bp direct terminal repeats. The presence of such repeats suggested replication through concatameric intermediates, and this was confirmed by analysis of the state of the phage genome in infected cells. This is a replication strategy adopted by many well-studied bacterial phages, for example T3 and T7. Other similarities between the terminal repeats of T3 or T7 and HF2 include a putative nick site at the repeat border and a series of short imperfect repeats. These observations suggest a long evolutionary history for concatamer-based strategies of phage replication, possibly predating the divergence of Archaea/Eucarya and Bacteria, or alternatively, indicate possible lateral transfer of phage genes or modules between the domains Archaea and Bacteria.
Collapse
Affiliation(s)
- S D Nuttall
- Department of Microbiology, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
11
|
Abstract
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.
Collapse
Affiliation(s)
- T A Bickle
- Department of Microbiology, Biozentrum, Basel University, Switzerland
| | | |
Collapse
|
12
|
Meisel A, Bickle TA, Krüger DH, Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 1992; 355:467-9. [PMID: 1734285 DOI: 10.1038/355467a0] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type III restriction/modification enzyme recognize short, non-palindromic sequences that can be methylated on only one strand, with the paradoxical consequence that during replication of what is in effect hemimethylated DNA totally unmodified sites arise. Why the unmodified sites are not subject to suicidal restriction was not clear. Here we show that restriction requires two unmodified recognition sites that can be separated by different distances but which must be in inverse orientation. All of the unmodified sites in newly replicated DNA are of course in the same orientation, which explains why they are not restricted. This result may be of relevance to other manifestations of anisotropy in double-stranded DNA, such as genetic imprinting.
Collapse
Affiliation(s)
- A Meisel
- Institute of Virology, Humboldt University Medical School, Charité, Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Gachechiladze KK, Balardshishvili NS, Adamia RS, Chanishvili TG, Krüger DH. Host-controlled modification and restriction as a criterion of evaluating the therapeutical potential of Pseudomonas phage. J Basic Microbiol 1991; 31:101-6. [PMID: 1880713 DOI: 10.1002/jobm.3620310206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recently isolated phages phi ST3 and phi ST1 were compared as to their lysis behaviour in about 100 different P. aeruginosa strains. The growth of phi ST3 varies greatly in different host strains. We demonstrated one case of "non-classical", host-dependent modification and restriction. Here the capability to adsorb, and consequently to reproduce in a given host strain differs, depending on which modification the phage acquired in its former host. The DNA-containing phage phi ST1 displays stable lysis properties in the majority of the host strains. This makes phi ST1 a candidate for therapeutic phage preparations. One of the reasons for stable lysis properties is the apparent selection against recognition sites of restriction enzymes in its genome.
Collapse
Affiliation(s)
- K K Gachechiladze
- Institute of Sera and Vaccines, Scientific-Industrial Union Bacteriophages, Georgia, USSR
| | | | | | | | | |
Collapse
|
14
|
Krüger DH, Prösch S, Reuter M, Goebel W. Cloning of the resistant EcoRII recognition site of phage T7 into an EcoRII-sensitive plasmid makes the site susceptible to the restriction enzyme. J Basic Microbiol 1990; 30:679-83. [PMID: 2086761 DOI: 10.1002/jobm.3620300913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recognition sequence 5'-CC(A/T)GG for EcoRII in the bacteriophage T7 genome is refractory to this restriction endonuclease, despite not bearing the specific (protective) methylation. Following the integration of this site as part of a 219 bp fragment (in which the recognition sequence is flanked by about 100 bp of T7 origin) into the EcoRII-sensitive vector pUC18, the T7 site becomes susceptible to cleavage, too. The same is true of recombinant pBR322 plasmids containing the T7-derived recognition site. The results show that the flanking sequences are not immediately responsible for the refractory behaviour of EcoRII sites and are in agreement with data according to which EcoRII requires the coordinated presence of at least two recognition sites in its DNA substrate.
Collapse
Affiliation(s)
- D H Krüger
- Institut für Medizinische Virologie, Humboldt-Universität, Berlin
| | | | | | | |
Collapse
|
15
|
Krüger DH, Schroeder C, Santibanez-Koref M, Reuter M. Avoidance of DNA methylation. A virus-encoded methylase inhibitor and evidence for counterselection of methylase recognition sites in viral genomes. CELL BIOPHYSICS 1989; 15:87-95. [PMID: 2476230 DOI: 10.1007/bf02991582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ocr+ gene of bacterial virus T7 codes for the first protein recognized to inhibit a specific group of DNA methylases. The recognition sequences of several other DNA methylases, not susceptible to Ocr inhibition, are significantly suppressed in the virus genome. The bacterial virus T3 encodes an Ado-Met hydrolase, destroying the methyl donor and causing T3 DNA to be totally unmethylated. These observations could stimulate analogous investigations into the regulation of DNA methylation patterns of eukaryotic viruses and cells. For instance, an underrepresentation of methylation sites (5'-CG) is also true for animal DNA viruses. Moreover, we were able to disclose some novel properties of DNA restriction-modification enzymes concerning the protection of DNA recognition sequences in which only one strand can be methylated (e.g., type III enzyme EcoP15) and the primary resistance of (unmethylated) DNA recognition sites towards type II restriction endonuclease EcoRII.
Collapse
Affiliation(s)
- D H Krüger
- Institute of Medical Virology, Humboldt University School of Medicine, Charité, Berlin, German Democratic Republic
| | | | | | | |
Collapse
|
16
|
Landry D, Looney MC, Feehery GR, Slatko BE, Jack WE, Schildkraut I, Wilson GG. M.FokI methylates adenine in both strands of its asymmetric recognition sequence. Gene 1989; 77:1-10. [PMID: 2744483 DOI: 10.1016/0378-1119(89)90353-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
M.FokI, a type-IIS modification enzyme from Flavobacterium okeanokoites, was purified, and its activity was characterized in vitro. The enzyme was found to be a DNA-adenine methyltransferase and to methylate both strands of the asymmetric FokI recognition sequence: (formula; see text) M.FokI does not methylate single-stranded DNA, nor does it methylate double-stranded DNA at sequences other than FokI sites.
Collapse
Affiliation(s)
- D Landry
- New England Biolabs, Inc., Beverly, MA 01915
| | | | | | | | | | | | | |
Collapse
|
17
|
Krüger DH, Schroeder C, Reuter M, Bickle TA, Bogdarina IG, Buryanov YI. Use of bacterial virus T7 as a tool for the study of DNA methylation. Gene X 1988; 74:85-7. [PMID: 3266863 DOI: 10.1016/0378-1119(88)90258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- D H Krüger
- Institute of Virology Humboldt University School of Medicine (Charité), Berlin, G.D.R
| | | | | | | | | | | |
Collapse
|
18
|
Hausmann R, Messerschmid M. Inhibition of gene expression of T7-related phages by prophage P1. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:543-7. [PMID: 3047552 DOI: 10.1007/bf00330862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gene expression of nine phages of the T7 group was compared after infection of Escherichia coli B(P1). With the exception of phage 13a which grew normally, all of them infected E. coli B(P1) abortively. Differences were found in the efficiency of host killing which ranged from 100% for phage 13a to 37% for phage A1122. Infection by T7 prevented colony formation by about 70% of the cells but they showed filamentous growth until about 2 h after infection. It was shown by SDS-polyacrylamide gel electrophoresis and autoradiography of [35S]methionine-labelled phage-coded proteins that all phages except for 13a showed measurable expression only of the early genes. No correlation was observed between killing capacity and the pattern of gene expression, and the ability to hydrolyse S-adenosyl-methionine (SAM, a cofactor for the P1 restriction endonuclease) by means of a phage-coded SAMase. Mixed infection of E. coli B(P1) with 13a and T7 yielded mixed progeny indistinguishable from that observed after mixed infection of the normal host E. coli B. Genetic crosses with amber mutants of 13a and T7 showed that the 13a marker opo+ (overcomes P one), required for growth on B(P1), is located in the early region, to the left of gene 1 (RNA polymerase gene).
Collapse
Affiliation(s)
- R Hausmann
- Institut für Biologie III der Universität Freiburg, Federal Republic of Germany
| | | |
Collapse
|
19
|
Krüger DH, Barcak GJ, Reuter M, Smith HO. EcoRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Res 1988; 16:3997-4008. [PMID: 2836807 PMCID: PMC336570 DOI: 10.1093/nar/16.9.3997] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
EcoRII restriction sites [5'-CC(A/T)GG] in phage T3 and T7 DNA are refractory to cleavage by EcoRII, but become sensitive to cleavage in the presence of DNAs which contain an abundance of EcoRII sensitive sites (e.g. pBR322 or lambda DNA). Studies using fragments of pBR322 containing different numbers of EcoRII sites show that the susceptibility to EcoRII cleavage is proportional to the number of sites in the individual fragment. We postulate that EcoRII is the prototype of restriction endonucleases which require at least 2 simultaneously bound substrate sites for their activation. EcoRII sites are refractory when they occur at relatively low frequency in the DNA. The restriction enzyme can be activated by DNA with a higher frequency of sites.
Collapse
Affiliation(s)
- D H Krüger
- Institute of Virology, Humboldt University School of Medicine (Charité), Berlin, GDR
| | | | | | | |
Collapse
|