1
|
Siddique AN, Jurkowska RZ, Jurkowski TP, Jeltsch A. Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. FEBS J 2011; 278:2055-63. [PMID: 21481189 DOI: 10.1111/j.1742-4658.2011.08121.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT • Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) • Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).
Collapse
Affiliation(s)
- Abu Nasar Siddique
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Germany
| | | | | | | |
Collapse
|
2
|
Bheemanaik S, Sistla S, Krishnamurthy V, Arathi S, Desirazu NR. Kinetics of Methylation by EcoP1I DNA Methyltransferase. Enzyme Res 2010; 2010:302731. [PMID: 21048863 PMCID: PMC2962900 DOI: 10.4061/2010/302731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
EcoP1I DNA MTase (M.EcoP1I), an N6-adenine MTase from bacteriophage P1, is a part of the EcoP1I restriction-modification (R-M) system which belongs to the Type III R-M system. It recognizes the sequence 5′-AGACC-3′ and methylates the internal adenine. M.EcoP1I requires Mg2+ for the transfer of methyl groups to DNA. M.EcoP1I is shown to exist as dimer in solution, and even at high salt concentrations (0.5 M) the dimeric M.EcoP1I does not dissociate into monomers suggesting a strong interaction between the monomer subunits. Preincubation and isotope partitioning studies with M.EcoP1I indicate a kinetic mechanism where the duplex DNA binds first followed by AdoMet. Interestingly, M.EcoP1I methylates DNA substrates in the presence of Mn2+ and Ca2+ other than Mg2+ with varying affinities. Amino acid analysis and methylation assays in the presence of metal ions suggest that M.EcoP1I has indeed two metal ion-binding sites [358ID(x)n … ExK401 and 600DxDxD604 motif]. EcoP1I DNA MTase catalyzes the transfer of methyl groups using a distributive mode of methylation on DNA containing more than one recognition site. A chemical modification of EcoP1I DNA MTase using N-ethylmaleimide resulted in an irreversible inactivation of enzyme activity suggesting the possible role of cysteine residues in catalysis.
Collapse
|
3
|
Peakman LJ, Szczelkun MD. S-adenosyl homocysteine and DNA ends stimulate promiscuous nuclease activities in the Type III restriction endonuclease EcoPI. Nucleic Acids Res 2009; 37:3934-45. [PMID: 19401438 PMCID: PMC2709564 DOI: 10.1093/nar/gkp267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the absence of the methyl donor S-adenosyl methionine and under certain permissive reaction conditions, EcoPI shows non-specific endonuclease activity. We show here that the cofactor analogue S-adenosyl homocysteine promotes this promiscuous DNA cleavage. Additionally, an extensive exonuclease-like processing of the DNA is also observed that can even result in digestion of non-specific DNA in trans. We suggest a model for how DNA communication events initiating from non-specific sites, and in particular free DNA ends, could produce the observed cleavage patterns.
Collapse
Affiliation(s)
- Luke J Peakman
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
4
|
Crampton N, Roes S, Dryden DTF, Rao DN, Edwardson JM, Henderson RM. DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes. EMBO J 2007; 26:3815-25. [PMID: 17660745 PMCID: PMC1952222 DOI: 10.1038/sj.emboj.7601807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/02/2007] [Indexed: 11/09/2022] Open
Abstract
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site-bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.
Collapse
Affiliation(s)
- Neal Crampton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Stefanie Roes
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Robert M Henderson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK. Tel.: +44 1223 334 053; Fax: +44 1223 334 100; E-mail:
| |
Collapse
|
5
|
Sistla S, Krishnamurthy V, Rao DN. Single-stranded DNA binding and methylation by EcoP1I DNA methyltransferase. Biochem Biophys Res Commun 2004; 314:159-65. [PMID: 14715260 DOI: 10.1016/j.bbrc.2003.12.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.
Collapse
Affiliation(s)
- Srivani Sistla
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | |
Collapse
|
6
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
7
|
Abstract
In the absence of DNA substrate, the DNA methyltransferase (MTase) M.BspRI can methylate itself using the methyl donor S-adenosyl-L-methionine (AdoMet). The methyl group is transferred to two Cys residues of the MTase.
Collapse
Affiliation(s)
- L Szilák
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
8
|
Szilák L, Finta C, Patthy A, Venetianer P, Kiss A. Self-methylation of BspRI DNA-methyltransferase. Nucleic Acids Res 1994; 22:2876-81. [PMID: 8065896 PMCID: PMC310249 DOI: 10.1093/nar/22.15.2876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA (cytosine-5)-methyltransferase (m5C-MTase) M.BspRI is able to accept the methyl group from the methyl donor S-adenosyl-L-methionine (AdoMet) in the absence of DNA. Transfer of the methyl group to the enzyme is a slow reaction relative to DNA methylation. Self-methylation is dependent on the native conformation of the enzyme and is inhibited by S-adenosyl-L-homocysteine, DNA and sulfhydryl reagents. Amino acid sequencing of proteolytic peptides obtained from M.BspRI, which had been methylated with [methyl-3H]AdoMet, and thin layer chromatography of the modified amino acid identified two cysteines, Cys156 and Cys181 that bind the methyl group in form of S-methylcysteine. One of the acceptor residues, Cys156 is the highly conserved cysteine which plays the role of the catalytic nucleophile of m5C-MTases.
Collapse
Affiliation(s)
- L Szilák
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
9
|
Sharrocks AD, Hornby DP. Transcriptional analysis of the restriction and modification genes of bacteriophage P1. Mol Microbiol 1991; 5:685-94. [PMID: 2046552 DOI: 10.1111/j.1365-2958.1991.tb00740.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacteriophage P1 res and mod genes encode the restriction and modification polypeptides of the Type III restriction enzyme EcoP1. Northern blot analysis using res- and mod-specific probes revealed the presence of two separate transcripts in strains harbouring the EcoP1 restriction and modification genes. Furthermore, by constructing a series of fusions with a promoter less lacZ gene, we show that both the res and mod genes are transcribed from separate promoters. A more detailed investigation of the mod promoter region revealed two promoters located some 70 and 140bp upstream from the translational start codon. In addition, another pair of promoters and a further separate promoter are located more than 500bp upstream from this start codon. Two short open reading frames are located between these distal and proximal promoter clusters. Transcription of the res gene is initiated from within the mod open reading frame from two adjacent promoters. In addition a functional promoter is located on the antisense strand close to the res promoter region. The relationship between the transcription units of the res and mod genes is discussed.
Collapse
Affiliation(s)
- A D Sharrocks
- Department of Molecular Biology, Krebs Institute, University of Sheffield, UK
| | | |
Collapse
|
10
|
Kessler C, Manta V. Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3). Gene 1990; 92:1-248. [PMID: 2172084 DOI: 10.1016/0378-1119(90)90486-b] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The properties and sources of all known class-I, class-II and class-III restriction endonucleases (ENases) and DNA modification methyltransferases (MTases) are listed and newly subclassified according to their sequence specificity. In addition, the enzymes are distinguished in a novel manner according to sequence specificity, cleavage position and methylation sensitivity. Furthermore, new nomenclature rules are proposed for unambiguously defined enzyme names. In the various Tables, the enzymes are cross-indexed alphabetically according to their names (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174, and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the ENases include relaxed specificities (integrated within Table II), the structure of the generated fragment ends (Table III), interconversion of restriction sites (Table IV) and the sensitivity to different kinds of DNA methylation (Table V). Table VI shows the influence of class-II MTases on the activity of class-II ENases with at least partially overlapping recognition sequences. Table VII lists all class-II restriction endonucleases and MTases which are commercially available. The information given in Table V focuses on the influence of methylation of the recognition sequences on the activity of ENases. This information might be useful for the design of cloning experiments especially in Escherichia coli containing M.EcodamI and M.EcodcmI [H16, M21, U3] or for studying the level and distribution of site-specific methylation in cellular DNA, e.g., 5'- (M)CpG-3' in mammals, 5'-(M)CpNpG-3' in plants or 5'-GpA(M)pTpC-3' in enterobacteria [B29, E4, M30, V4, V13, W24]. In Table IV a cross index for the interconversion of two- and four-nt 5'-protruding ends into new recognition sequences is complied. This was obtained by the fill-in reaction with the Klenow (large) fragment of the E. coli DNA polymerase I (PolIk), or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments [K56, P3].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Kessler
- Boehringer Mannheim GmbH, Biochemical Research Center, Penzberg, F.R.G
| | | |
Collapse
|
11
|
Rao DN, Eberle H, Bickle TA. Characterization of mutations of the bacteriophage P1 mod gene encoding the recognition subunit of the EcoP1 restriction and modification system. J Bacteriol 1989; 171:2347-52. [PMID: 2708308 PMCID: PMC209907 DOI: 10.1128/jb.171.5.2347-2352.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study characterized several mutations of the bacteriophage P1 mod gene. This gene codes for the subunit of the EcoP1 restriction enzyme that is responsible for DNA sequence recognition and for modification methylation. We cloned the mutant mod genes into expression vectors and purified the mutant proteins to near homogeneity. Two of the mutant mod genes studied were the c2 clear-plaque mutants described by Scott (Virology 41:66-71, 1970). These mutant proteins can recognize EcoP1 sites in DNA and direct restriction but are unable to modify DNA. Methylation assays as well as S-adenosylmethionine (SAM) binding studies showed that the c2 mutants are methylation deficient because they do not bind SAM, and we conclude that the mutations destroy the SAM-binding site. Both of the c2 mutations lie within a region of the EcoP1 mod gene that is not conserved when compared with the mod gene of the related EcoP15 system. EcoP15 and EcoP1 recognize different DNA sequences, and we believe that this region of the protein may code for the DNA-binding site of the enzyme. The other mutants characterized were made by site-directed mutagenesis at codon 240. Evidence is presented that one of them, Ser-240----Pro, simultaneously lost the capacity to bind SAM and may also have changed its DNA sequence specificity.
Collapse
Affiliation(s)
- D N Rao
- Department of Microbiology, Basel University, Switzerland
| | | | | |
Collapse
|
12
|
Hümbelin M, Suri B, Rao DN, Hornby DP, Eberle H, Pripfl T, Kenel S, Bickle TA. Type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J Mol Biol 1988; 200:23-9. [PMID: 2837577 DOI: 10.1016/0022-2836(88)90330-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.
Collapse
Affiliation(s)
- M Hümbelin
- Department of Microbiology, University of Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|