1
|
Chairi H, Gonzalez LR. Structure and Organization of the Engraulidae Family U2 snRNA: An Evolutionary Model Gene? J Mol Evol 2015; 80:209-18. [PMID: 25838107 DOI: 10.1007/s00239-015-9674-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
Abstract
The U2 snRNA multigene family has been analyzed in four species of the Engraulidae family--Engraulis encrasicolus, Engraulis mordax, Engraulis ringens, and Engraulis japonicas--with the object of understanding more about the structure of this multigene family in these pelagic species and studying their phylogenetic relationships. The results showed that the cluster of this gene family in the Engraulis genus is formed by the U2-U5 snRNA with highly conserved sequences of mini- and micro-satellites, such as (CTGT)n, embedded downstream of the transcription unit; findings indicate that this gene family evolved following the concerted model. The phylogenetic analysis of the non-transcribed spacer of cluster U2-U5 snDNA in the 4 species showed that the sequences of the species E. encrasicolus and E. japonicus are closely related; these two are genetically close to E. mordax and slightly more distant from E. ringens. The data obtained by molecular analysis of U2-U5 snDNA and their secondary structure, with the presence of the micro-satellite (CTGT)n and mini-satellites, show clearly that the species E. encrasicolus and E. japonicus are closely related and would be older than E. mordax and E. ringens.
Collapse
Affiliation(s)
- Hicham Chairi
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Polígono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
2
|
Bailey AD, Pavelitz T, Weiner AM. The microsatellite sequence (CT)n x (GA)n promotes stable chromosomal integration of large tandem arrays of functional human U2 small nuclear RNA genes. Mol Cell Biol 1998; 18:2262-71. [PMID: 9528797 PMCID: PMC121475 DOI: 10.1128/mcb.18.4.2262] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
The multigene family encoding human U2 small nuclear RNA (snRNA) is organized as a single large tandem array containing 5 to 25 copies of a 6.1-kb repeat unit (the RNU2 locus). Remarkably, each of the repeat units within an individual U2 tandem array appears to be identical except for an irregular dinucleotide tract, known as the CT microsatellite, which exhibits minor length and sequence polymorphism. Using a somatic cell genetic assay, we previously noticed that the CT microsatellite appeared to stabilize artificial tandem arrays of U2 snRNA genes. We now demonstrate that the CT microsatellite is required to establish large tandem arrays of transcriptionally active U2 genes, increasing both the average and maximum size of the resulting arrays. In contrast, the CT microsatellite has no effect on the average or maximal size of artificial arrays containing transcriptionally inactive U2 genes that lack key promoter elements. Our data reinforce the connection between recombination and transcription. Active U2 transcription interferes with establishment or maintenance of the U2 tandem array, and the CT microsatellite opposes these effects, perhaps by binding GAGA or GAGA-related factors which alter local chromatin structure. We speculate that the mechanisms responsible for maintenance of tandem arrays containing active promoters may differ from those that maintain tandem arrays of transcriptionally inactive sequences.
Collapse
Affiliation(s)
- A D Bailey
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
3
|
Yoon Y, Sanchez JA, Brun C, Huberman JA. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol 1995; 15:2482-9. [PMID: 7739533 PMCID: PMC230478 DOI: 10.1128/mcb.15.5.2482] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
New techniques for mapping mammalian DNA replication origins are needed. We have modified the existing nascent-strand size analysis technique (L. Vassilev and E.M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989) to provide an independent means of studying replication initiation sites. We call the new method nascent-strand abundance analysis. We confirmed the validity of this method with replicating simian virus 40 DNA as a model. We then applied nascent-strand abundance and nascent-strand size analyses to mapping of initiation sites in human (HeLa) ribosomal DNA (rDNA), a region previously examined exclusively by two-dimensional gel electrophoresis methods (R.D. Little, T.H.K. Platt, and C.L. Schildkraut, Mol. Cell. Biol. 13:6600-6613, 1993). Our results partly confirm those obtained by two-dimensional gel electrophoresis techniques. Both studies suggest that replication initiates at relatively high frequency a few kilobase pairs upstream of the transcribed region and that many additional low-frequency initiation sites are distributed through most of the remainder of the ribosomal DNA repeat unit.
Collapse
Affiliation(s)
- Y Yoon
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
4
|
Grabczyk E, Fishman MC. A long purine-pyrimidine homopolymer acts as a transcriptional diode. J Biol Chem 1995; 270:1791-7. [PMID: 7829515 DOI: 10.1074/jbc.270.4.1791] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polypurine-polypyrimidine (R.Y) sequences have the unusual ability to form DNA triple helices. Such tracts are overrepresented upstream of eukaryotic genes, although a function there has not been clear. We report that transcription in vitro into one such upstream R.Y tract in the direction that makes a predominantly purine RNA is effectively blocked by formation of an intramolecular triple helix. The triplex is triggered by transcription and stabilized by the binding of nascent purine RNA to the template. Transcription in the opposite direction is not restricted. Polypurine-polypyrimidine DNA may provide a dynamic and selective block to transcription without the aid of accessory proteins.
Collapse
Affiliation(s)
- E Grabczyk
- Developmental Biology Laboratory, Massachusetts General Hospital, Charlestown 02129-2600
| | | |
Collapse
|
5
|
Yang Q, Zwick MG, Paule MR. Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers. Nucleic Acids Res 1994; 22:4798-805. [PMID: 7984432 PMCID: PMC308533 DOI: 10.1093/nar/22.22.4798] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The primary sequence of the entire 2330 bp intergenic spacer of the A.castellanii ribosomal RNA gene was determined. Repeated sequence elements averaging 140 bp were identified and found to bind a protein required for optimum initiation at the core promoter. These repeated elements were shown to stimulate rRNA transcription by RNA polymerase I in vitro. The repeats inhibited transcription when placed in trans, and stimulated transcription when in cis, in either orientation, but only when upstream of the core promoter. Thus, these repeated elements have characteristics similar to polymerase I enhancers found in higher eukaryotes. The number of rRNA repeats in Acanthamoeba cells was determined to be 24 per haploid genome, the lowest number so far identified in any eukaryote. However, because Acanthamoeba is polyploid, each cell contains approximately 600 rRNA genes.
Collapse
MESH Headings
- Acanthamoeba/genetics
- Animals
- Base Composition
- Base Sequence
- Cloning, Molecular
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Dosage
- Genes, Protozoan/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Protozoan/genetics
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
6
|
Siderovski DP, Heximer SP, Forsdyke DR. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol 1994; 13:125-47. [PMID: 8179820 DOI: 10.1089/dna.1994.13.125] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
G0S8 is a member of a set of putative G0/G1 switch regulatory genes (G0S genes) selected by screening cDNA libraries prepared from blood mononuclear cells cultured for 2 hr with lectin and cycloheximide. Comparison of a full-length cDNA sequence with the corresponding genomic sequence reveals an open reading frame of 211 amino acids, distributed across 5 exons. The 24-kD protein has a basic domain preceding a potential helix-loop-helix domain which contains a QTK motif found about 60 amino acids from the carboxyl terminus in the loop region of several helix-loop-helix proteins. There are potential phosphorylation sites for protein kinase C, creatine kinase II, and protein tyrosine kinases and regions of sequence similarity to helix-loop-helix proteins, tyrosine phosphatases, and RNA and DNA polymerases. The genomic sequence contains a CpG island, suggesting expression in the germ line. Potential binding sites for transcription factors are present in the 5' flank and introns; these include Zif268/NGFI-A/EGR1/G0S30, NGFI-B, Ap1, and factors that react with retroviral long terminal repeats (LTRs). There are several potential interferon response elements and a serum response element in the 3' flank overlapping a region of similarity to a cytomegalovirus immediate-early gene enhancer. Many of these motifs are found in immediate-early G0/G1 switch genes; however, we were unable to demonstrate an increase in G0S8 mRNA in response to lectin alone. Sequence similarities are noted between G0S8 and a variety of genes involved in the immune system, in the regulation of retroviruses, and in the cell cycle.
Collapse
Affiliation(s)
- D P Siderovski
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
7
|
Novak EM, de Mello MP, Gomes HB, Galindo I, Guevara P, Ramirez JL, da Silveira JF. Repetitive sequences in the ribosomal intergenic spacer of Trypanosoma cruzi. Mol Biochem Parasitol 1993; 60:273-80. [PMID: 8232418 DOI: 10.1016/0166-6851(93)90138-n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A fragment of Trypanosoma cruzi ribosomal intergenic spacer (IGS) located at 6.7 kb from the 3' end of the 24S rRNA gene was analyzed. This IGS fragment is characterized by the presence of three types of repetitive elements (designated Spacer Repetitive Elements, SRE), short direct repeats (5-6 bp) and chi-like recombinational sequences. SRE elements are composed of relatively short repeats (43-145 bp) which show variabilities consisting of nucleotide changes, insertions and deletions. SRE-1 element (145 bp) has a short oligo(dA) tail at the end of the repeat and can be found flanked by other SRE elements. SRE elements are species-specific, suggesting that probes based on them may be diagnostic for Trypanosoma cruzi.
Collapse
Affiliation(s)
- E M Novak
- Disciplina de Parasitologia, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA. Mol Cell Biol 1993. [PMID: 8391637 DOI: 10.1128/mcb.13.7.4382] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.
Collapse
|
9
|
Rimoldi OJ, Raghu B, Nag MK, Eliceiri GL. Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA. Mol Cell Biol 1993; 13:4382-90. [PMID: 8391637 PMCID: PMC360001 DOI: 10.1128/mcb.13.7.4382-4390.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.
Collapse
Affiliation(s)
- O J Rimoldi
- Department of Pathology, St. Louis University School of Medicine, Missouri 63104-1028
| | | | | | | |
Collapse
|
10
|
Gonzalez IL, Wu S, Li WM, Kuo BA, Sylvester JE. Human ribosomal RNA intergenic spacer sequence. Nucleic Acids Res 1992; 20:5846. [PMID: 1454549 PMCID: PMC334433 DOI: 10.1093/nar/20.21.5846] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- I L Gonzalez
- Pathology Department MS 435, Hahnemann University, Philadelphia, PA 19102
| | | | | | | | | |
Collapse
|
11
|
Grøsvik BE, Raae AJ. The genome size and the structure and content of ribosomal RNA genes in Atlantic cod (Gadus morhua L.). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 101:407-11. [PMID: 1582179 DOI: 10.1016/0305-0491(92)90020-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The haploid genome size of the Atlantic cod was estimated to 3.4 x 10(8)kb by reassociation kinetics analysis of cod sperm DNA. 2. The size of the small and large subunit ribosomal RNAs is 1.85 and 4.1 kb, respectively. 3. Restriction enzyme mapping of the rRNA coding unit revealed conservation of an Eco RI site in the coding regions of 18 S and 28 S rRNA and a Bam HI site in the 28 S rRNA coding region compared to other fish species. 4. The length of the repeat unit of the cod rDNA was found to be 30 kb. 5. The rRNA genes are repeated approximately 50 times in the cod genome and constitutes 0.08% of the cod genetic material.
Collapse
Affiliation(s)
- B E Grøsvik
- University of Bergen, Department of Biochemistry, Norway
| | | |
Collapse
|
12
|
Abstract
Three trends are seen in the organization of ribosomal DNA genes during evolution: 1) gradual separation and separability of the regulation of transcription of 5S and larger subunit rRNAs; 2) retention of a transcription unit containing both large and small rRNAs; and 3) clustering of genes for both 5S and 18S-28S rDNAs, with the possible association of other 'non-rDNA' in the clusters of 18S-28S rDNA genes by the time mammals evolve.
Collapse
MESH Headings
- Animals
- Biological Evolution
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Mammals/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5S/genetics
- Transcription, Genetic
- Yeasts/genetics
- rRNA Operon/genetics
Collapse
Affiliation(s)
- A K Srivastava
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
13
|
Dutta SK, Verma M. Primary structure of the non-transcribed spacer region and flanking sequences of the ribosomal DNA of Neurospora crassa and comparison with other organisms. Biochem Biophys Res Commun 1990; 170:187-93. [PMID: 2142594 DOI: 10.1016/0006-291x(90)91258-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The non-transcribed spacer (NTS) region of the rDNA of Neurospora crassa contains the transcription regulatory sequences. We isolated a 3.4 kb EcoRI fragment from wild type N.crassa rDNA and cloned in the plasmid pBR325 at the EcoRI site. The insert contains the entire NTS region along with the flanking sequences. Nucleotide sequencing of 3592 nt shows many interesting features like: the NTS region is rich in G+C content (65% G+C); it contains the conserved rRNA processing site 6 (with the nucleotide sequence motif GGTGCGAGAACCCGG, from nt residue 226 to 240, a characteristic feature of most eukaryotic rDNA nontranscribed spacer region); and the NTS region also contains the transcription termination site with the representative Sal I box (from nt residue 1469 to 1477). The potential sequences of transcription termination site are located 288 nt downstream from the end of 26S rRNA gene, and another sequence motif CTTCCT (from nt residue 512 to 517) shows similarity with the human transcription termination site T-2 of its pre-rRNA. Nucleotide sequence homology matrix analysis suggests its relatedness to Saccharomyces cerevisiae and not to human, mouse, rat, Drosophila, Xenopus, wheat, rice and cucumber NTS region. The phylogenetic implication of the NTS region and exploitation of N.crassa NTS rDNA clone to correlate the otherwise indistinguishable species of Neurospora and the correlation with other organisms has been discussed. To the best of our knowledge this is the first report where the nucleotide sequence of the entire NTS region of a filamentous fungus has been determined.
Collapse
Affiliation(s)
- S K Dutta
- Department of Botany, Howard University, Washington, DC 20059
| | | |
Collapse
|
14
|
Gonzalez IL, Chambers C, Gorski JL, Stambolian D, Schmickel RD, Sylvester JE. Sequence and structure correlation of human ribosomal transcribed spacers. J Mol Biol 1990; 212:27-35. [PMID: 2319598 DOI: 10.1016/0022-2836(90)90302-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the sequences of the transcribed spacers of human rRNA that now allow us to piece together the entire primary transcript sequence of approximately 13.3 x 10(3) base-pairs. Comparison of transcribed spacer sequences with those of variable regions of rRNA and with those of the non-transcribed spacers supports the hypothesis that the variable regions are descended from transcribed spacers. Nucleotide sequence-derived secondary structures for the 5' external transcribed spacer and for internal transcribed spacers 1 and 2 match both the sizes and shapes of the structures that were visualized 15 years ago on electron micrographs. Parts of these structures are conserved in mammals and may be related to transcript processing.
Collapse
Affiliation(s)
- I L Gonzalez
- Hahnemann University, Department of Pathology, Philadelphia, PA 19102
| | | | | | | | | | | |
Collapse
|