1
|
Tripathy S, Tyler BM. The repertoire of transfer RNA genes is tuned to codon usage bias in the genomes of Phytophthora sojae and Phytophthora ramorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1322-8. [PMID: 17153916 DOI: 10.1094/mpmi-19-1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In all, 238 and 155 transfer (t)RNA genes were predicted from the genomes of Phytophthora sojae and P. ramorum, respectively. After omitting pseudogenes and undetermined types of tRNA genes, there remained 208 P. sojae tRNA genes and 140 P. ramorum tRNA genes. There were 45 types of tRNA genes, with distinct anticodons, in each species. Fourteen common anticodon types of tRNAs are missing altogether from the genome in the two species; however, these appear to be compensated by wobbling of other tRNA anticodons in a manner which is tied to the codon bias in Phytophthora genes. The most abundant tRNA class was arginine in both P. sojae and P. ramorum. A codon usage table was generated for these two organisms from a total of 9,803,525 codons in P. sojae and 7,496,598 codons in P. ramorum. The most abundant codon type detected from the codon usage tables was GAG (encoding glutamic acid), whereas the most numerous tRNA gene had a methionine anticodon (CAT). The correlation between the frequencies of tRNA genes and the codon frequencies in protein-coding genes was very low (0.12 in P. sojae and 0.19 in P. ramorum); however, the correlation between amino acid tRNA gene frequency and the corresponding amino acid codon frequency in P. sojae and P. ramorum was substantially higher (0.53 in P. sojae and 0.77 in P. ramorum). The codon usage frequencies of P. sojae and P ramorum were very strongly correlated (0.99), as were tRNA gene frequencies (0.77). Approximately 60% of orthologous tRNA gene pairs in P sojae and P. ramorum are located in regions that have conserved synteny in the two species.
Collapse
Affiliation(s)
- Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
2
|
Abstract
RNA polymerase III (pol III) transcribes many essential, small, noncoding RNAs, including the 5S rRNAs and tRNAs. While most pol III-transcribed genes are found scattered throughout the linear chromosome maps or in multiple linear clusters, there is increasing evidence that many of these genes prefer to be spatially clustered, often at or near the nucleolus. This association could create an environment that fosters the coregulation of transcription by pol III with transcription of the large ribosomal RNA repeats by RNA polymerase I (pol I) within the nucleolus. Given the high number of pol III-transcribed genes in all eukaryotic genomes, the spatial organization of these genes is likely to affect a large portion of the other genes in a genome. In this Survey and Summary we analyze the reports regarding the spatial organization of pol III genes and address the potential influence of this organization on transcriptional regulation.
Collapse
Affiliation(s)
| | - David R. Engelke
- To whom correspondence should be addressed. Tel: +1 734 763 0641; Fax:+1 734 763 7799;
| |
Collapse
|
3
|
Perez J, Moran P, Garcia-Vazquez E. Isolation, characterization, and chromosomal location of the tRNA(Met) genes in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Genome 2000; 43:185-90. [PMID: 10701129 DOI: 10.1139/g99-084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work describes the isolation, characterization, and physical location of the methionine tRNA in the genome of Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.). An Atlantic salmon genomic library was screened using a tRNA(Met) probe from Xenopus laevis. Two cosmid clones containing the Atlantic salmon tRNA(Met) gene were isolated, subcloned and sequenced. The tRNA(Met) was mapped to metaphase chromosomes by fluorescence in situ hybridization (FISH). Chromosomal data indicated that the tDNA of methionine is tandemly repeated in a single locus in both species. Analysis of genomic DNA by Southern hybridization confirmed the tandem organization of this gene.
Collapse
Affiliation(s)
- J Perez
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | |
Collapse
|
4
|
Bentley KL, Li WL, VannBerg FO, Choi JY, Yu J, Kao FT, Ruaño G. Detailed analysis of a 17q21 microdissection library by sequence bioinformatics and isolation of region-specific clones. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:353-365. [PMID: 9580249 DOI: 10.1007/bf02674282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A region-specific microdissection library originating from human chromosome 17q21, was constructed using the MboI linker-adaptor microcloning technique. DNA sequencing of 241 microclones resulted in the identification of 74 novel coding sequences, paralogs of known genes, and known, but previously unmapped, genes or expressed sequence tags that were "virtually" mapped to chromosome 17q21. By pooling the microclones as multiplexed hybridization probes, and by virtue of their origin on 17q21, we were able to identify approximately 150 P1 clones from the human Reference Library Data Base P1 Library that potentially map to chromosome 17q21. Verification of the 17q21 location of 16 P1 clones was accomplished by PCR analysis with STS primer pairs to known 17q21 genes or by FISH. Our results demonstrate the substantial advantage of combining the sequence analysis of microclones with multiplex hybridization strategies for gene discovery and mapping specific gene rich regions of the genome.
Collapse
Affiliation(s)
- K L Bentley
- Genaissance Pharmaceuticals, Inc., New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Eubanks AC, Roeder MJ, Pirtle IL, Pirtle RM. Structural analysis of a bovine arginine tRNA(CCG) gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:138-44. [PMID: 9199243 DOI: 10.1016/s0167-4781(97)00053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A bovine genomic clone containing a 17.4-kb DNA fragment was isolated and found to contain a solitary arginine tRNA gene with an anticodon of CCG that has a 100% identity to its cognate tRNA. This arginine tRNA gene, symbolized as TRR4, has a characteristic internal split promoter and a typical termination site for RNA polymerase III. The tRNA gene was transcribed in vitro by RNA polymerase III using a HeLa cell-free extract to yield a mature-sized tRNA product. The gene was mapped to bovine chromosome 19 using a panel of bovine-rodent somatic cell hybrid DNAs.
Collapse
Affiliation(s)
- A C Eubanks
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | | | | | |
Collapse
|
6
|
Dammann R, Pfeifer GP. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol Cell Biol 1997; 17:219-29. [PMID: 8972202 PMCID: PMC231746 DOI: 10.1128/mcb.17.1.219] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UV light induces DNA lesions which are removed by nucleotide excision repair. Genes transcribed by RNA polymerase II are repaired faster than the flanking chromatin, and the transcribed strand is repaired faster than the coding strand. Transcription-coupled repair is not seen in RNA polymerase I-transcribed human rRNA genes. Since repair of genes transcribed by RNA polymerase III has not been analyzed before, we investigated DNA repair of tRNA genes after irradiation of human fibroblasts with UVC. We studied the repair of UV-induced cyclobutane pyrimidine dimers at nucleotide resolution by ligation-mediated PCR. A single-copy gene encoding selenocysteine tRNA, a tRNA valine gene, and their flanking sequences were analyzed. Protein-DNA footprinting showed that both genes were occupied by regulatory factors in vivo, and Northern blotting and nuclear run-on analysis of the tRNA indicated that these genes were actively transcribed. We found that both genes were repaired slower than RNA polymerase II-transcribed genes. No major difference between repair of the transcribed and the coding DNA strands was detected. Transcribed sequences of the tRNA genes were not repaired faster than flanking sequences. Indeed, several sequence positions in the 5' flanking region of the tRNA(Val) gene were repaired more efficiently than the gene itself. These results indicate that unlike RNA polymerase II, RNA polymerase III has no stimulatory effect on DNA repair. Since tRNA genes are covered by the regulatory factor TFIIIC and RNA polymerase III, these proteins may actually inhibit the DNA's accessibility to repair enzymes.
Collapse
Affiliation(s)
- R Dammann
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | |
Collapse
|
7
|
Bourn D, Carr T, Livingstone D, McLaren A, Goddard JP. An intron-containing tRNAArg gene within a large cluster of human tRNA genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1994; 5:83-92. [PMID: 7703509 DOI: 10.3109/10425179409039709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The insert within lambda Ht363, a recombinant selected from a bank of human genomic DNA cloned in lambda Ch4A, is described. Southern blot hybridization with a mixed tRNA[32P]pCp probe revealed the presence of four tRNA genes, which were shown to represent further copies of genes previously identified as a solitary tRNAGly gene and as a three gene cluster on two different recombinants. In vitro transcription of a fragment containing the three gene cluster revealed the presence of a further pol III gene, which was shown to be that for a tRNAArgTCT. This gene contains a 15 bp intron, the presence of which presumably prevented its detection on Southern blots by tRNA hybridisation. The gene is present in the previously reported cluster and occurs in higher copy number (> 7) in other arrangements in the genome. Most of the copies of the gene have related intron sequences.
Collapse
Affiliation(s)
- D Bourn
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | | | | | | | |
Collapse
|
8
|
Pirtle IL, Chang YN, Lee MM, Yi HF, Wang SY, McBride OW, Pirtle RM. A human DNA segment encompassing leucine and methionine tRNA pseudogenes localized on chromosome 6. Gene 1993; 136:157-66. [PMID: 8293999 DOI: 10.1016/0378-1119(93)90459-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A human genomic clone, designated LHtlm8, that strongly hybridized to a mammalian leucine tRNA(IAG) probe, was found to encompass a pair of tRNA pseudogenes that are transcribed in a homologous cell extract. A leucine tRNA(AAG) pseudogene (TRLP1) is 2.1-kb upstream and of opposite polarity to a methionine elongator tRNA(CAU) pseudogene (TRMEP1). TRLP1 has three nucleotide variations (97% identity) from its cognate leucine tRNA(IAG), while TRMEP1 has a 78% identity with its cognate tRNA. Similar to a number of other eukaryotic tRNA pseudogenes, presumptive precursor tRNA transcripts are generated from the two pseudogenes in vitro, but possibly due to their aberrant and unstable secondary and tertiary structures, no detectable mature tRNA products are observed. The two tRNA pseudogenes are encompassed within a 9.6-kb EcoRI fragment that has been assigned to the chromosomal locus, 6pter-q13, by Southern blot hybridization of human-rodent somatic cell hybrid DNAs with probes derived from the cloned tRNA pseudogenes and flanking sequences. A 4.4-kb EcoRI fragment also harbored in clone LHtlm8 was mapped to human chromosome 11, suggesting that the two EcoRI fragments were inadvertantly ligated together during construction of the genomic library.
Collapse
Affiliation(s)
- I L Pirtle
- Department of Biological Sciences, University of North Texas, Denton 76203
| | | | | | | | | | | | | |
Collapse
|
9
|
Kaçar Y, Thomann HU, Gross HJ. The first human genes for tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU) and more tRNA(Val) pseudogenes: expression and pre-tRNA maturation in HeLa cell-free extracts. DNA Cell Biol 1992; 11:781-90. [PMID: 1457046 DOI: 10.1089/dna.1992.11.781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.
Collapse
Affiliation(s)
- Y Kaçar
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
10
|
Chee MS, Rizos H, Henderson BR, Baker R, Stewart TS. Subfamilies of serine tRNA genes in the bovine genome. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:106-12. [PMID: 1753940 DOI: 10.1007/bf00293828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bovine tRNA gene cluster has been characterized and the sequences of four tDNAs determined. Two of the tDNAs could encode tRNA(SerIGA), one tRNA(SerUGA), and the fourth tRNA(GlnCUG). The three serine tDNAs representing the UCN codon isoacceptor family are almost identical. However, the sequence of the tDNA(SerTGA) differs from a previously sequenced bovine tDNA(SerTGA) at 12 positions (ca. 14%). This finding suggests that in the bovine genome, two subfamilies of genes might encode tRNA(SerUGA). It also raises the possibility that new genes for a specific UCN isoacceptor might arise from the genes of a different isoacceptor, and could explain previously observed differences between species in the anticodons of coevolving pairs of tRNAs(SerUCN). The gene cluster also contains complete and partial copies, and fragments, of the BCS (bovine consensus sequence) SINE (short interspersed nuclear element) family, six examples of which were sequenced. Some of these elements occur in close proximity to two of the serine tDNAs.
Collapse
Affiliation(s)
- M S Chee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
11
|
Beier D, Stange N, Gross HJ, Beier H. Nuclear tRNA(Tyr) genes are highly amplified at a single chromosomal site in the genome of Arabidopsis thaliana. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:72-80. [PMID: 2000093 DOI: 10.1007/bf00282644] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have examined the organization of tRNA(Tyr) genes in three ecotypes of Arabidopsis thaliana, a plant with an extremely small genome of 7 x 10(7) bp. Three tRNA(Tyr) gene-containing EcoRI fragments of 1.5 kb and four fragments of 0.6, 1.7, 2.5 and 3.7 kb were cloned from A. thaliana cv. Columbia (Col-O) DNA and sequenced. All EcoRI fragments except those of 0.6 and 2.5 kb comprise an identical arrangement of two tRNA(Tyr) genes flanked by a tRNA(Ser) gene. The three tRNA genes have the same polarity and are separated by 250 and 370 bp, respectively. The tRNA(Tyr) genes encode the known cytoplasmic tRNA(G psi ATyr). Both genes contain a 12 bp long intervening sequence. Densitometric evaluation of the genomic blot reveals the presence of at least 20 copies, including a few multimers, of the 1.5 kb fragment in Col-O DNA, indicating a multiple amplification of this unit. Southern blots of EcoRI-digested DNA from the other two ecotypes, cv. Landsberg (La-O) and cv. Niederzenz (Nd-O) also show 1.5 kb units as the major hybridizing bands. Several lines of evidence support the idea of a strict tandem arrangement of this 1.5 kb unit: (i) Sequence analysis of the EcoRI inserts of 2.5 and 0.6 kb reveals the loss of an EcoRI site between 1.5 kb units and the introduction of a new EcoRI site in a 1.5 kb dimer. (ii) Complete digestion of Col-O DNA with restriction enzymes which cleave only once within the 1.5 kb unit also produces predominantly 1.5 kb fragments. (iii) Partial digestion with EcoRI shows that the 1.5 kb fragments indeed arise from the regular spacing of the restriction sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | | | | | |
Collapse
|
12
|
Schmutzler C, Gross HJ. Genes, variant genes, and pseudogenes of the human tRNA(Val) gene family are differentially expressed in HeLa cells and in human placenta. Nucleic Acids Res 1990; 18:5001-8. [PMID: 2402432 PMCID: PMC332105 DOI: 10.1093/nar/18.17.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pre-tRNAs(Val) were identified in unfractionated tRNA preparations from HeLa cells and human placenta and their 5' leader structures were deduced from the nucleotide sequences of the corresponding cDNAs. Several of these precursors can be assigned to nine out of the eleven members of the human tRNA(Val) gene family characterized so far, which demonstrates that these gene loci are actively transcribed in vivo. Among the expressed genes there are (a) genes for the two known tRNA(Val) isoacceptor species from human placenta, (b) gene variants that exhibit sequence alterations as compared to conventional genes, and (c) pseudogenes that produce processing-deficient precursors which are not matured to tRNAs. The transcription products of several yet unknown tRNA(Val) genes have also been detected. Furthermore, different expression patterns are observed in the two cell types studied. These data allow for the first time an insight into the in vivo expression of a human tRNA gene family.
Collapse
Affiliation(s)
- C Schmutzler
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | |
Collapse
|
13
|
McBride OW, Pirtle IL, Pirtle RM. Localization of three DNA segments encompassing tRNA genes to human chromosomes 1, 5, and 16: proposed mechanism and significance of tRNA gene dispersion. Genomics 1989; 5:561-73. [PMID: 2613239 DOI: 10.1016/0888-7543(89)90024-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chromosomal locations of three cloned human DNA fragments encompassing tRNA genes have been determined by Southern analysis of human-rodent somatic cell hybrid DNAs with subfragments from these cloned genes and flanking sequences used as hybridization probes. These three DNA segments have been assigned to human chromosomes 1, 5, and 16, and homologous sequences are probably located on chromosome 14 and a separate locus on chromosome 1. These studies, combined with previous results, indicate that tRNA genes and pseudogenes are dispersed on at least seven different human chromosomes and suggest that these sequences will probably be found on most, if not all, human chromosomes. Short (8-12 nucleotide) direct terminal repeats flank many of the dispersed tRNA genes. The presence of these flanking repeats, combined with the dispersion of tRNA genes throughout the human genome, suggests that many of these genes may have arisen by an RNA-mediated retroposition mechanism. The possible functional significance of this gene dispersion is considered.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Southern
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 5
- DNA/genetics
- Genes
- Humans
- Hybrid Cells
- Multigene Family
- Pseudogenes
- RNA, Transfer/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Val/genetics
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
Collapse
Affiliation(s)
- O W McBride
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
14
|
Craig LC, Wang LP, Lee MM, Pirtle IL, Pirtle RM. A human tRNA gene cluster encoding the major and minor valine tRNAs and a lysine tRNA. DNA (MARY ANN LIEBERT, INC.) 1989; 8:457-71. [PMID: 2766931 DOI: 10.1089/dna.1.1989.8.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A human genomic DNA clone hybridizing to mammalian valine tRNA(IAC) contained a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNA(CUU) gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region. At least nine Alu family members were interspersed throughout the 18.5-kb human DNA fragment, with three Alu elements in the intergenic region between the valine tRNA(AAC) gene and the lysine tRNA gene. Each of the five Alu family members in the sequenced region can be categorized into one of the four Alu subfamilies. The coding regions of all three tRNA genes contain characteristic internal split promoter sequences and typical RNA polymerase III termination signals in the 3'-flanking regions. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase T1 fingerprints of the mature-sized tRNA transcription products are consistent with the structural genes. The lysine tRNA(CUU) gene was transcribed only slightly more efficiently than the valine tRNA(CAC) gene in the homologous in vitro transcription system. Surprisingly, the valine tRNA(CAC) gene was transcribed about eightfold more efficiently than the valine tRNA(AAC) gene, implicating the presence of a modulatory element in the upstream region flanking the tRNA(CAC) gene.
Collapse
Affiliation(s)
- L C Craig
- Department of Biochemistry, University of North Texas, Texas College of Osteopathic Medicine, Denton 76203
| | | | | | | | | |
Collapse
|