1
|
Berg L, Lale R, Bakke I, Burroughs N, Valla S. The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5'-untranslated part of mRNA. Microb Biotechnol 2011; 2:379-89. [PMID: 21261932 PMCID: PMC3815758 DOI: 10.1111/j.1751-7915.2009.00107.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Secondary structures and the short Shine-Dalgarno sequence in the 5'-untranslated region of bacterial mRNAs (UTR) are known to affect gene expression at the level of translation. Here we report the use of random combinatorial DNA sequence libraries to study UTR function, applying the strong, σ(32)/σ(38)-dependent, and positively regulated Pm promoter as a model. All mutations in the libraries are located at least 8 bp downstream of the transcriptional start site. The libraries were screened using the ampicillin-resistance gene (bla) as reporter, allowing easy identification of UTR mutants that display high levels of expression (up to 20-fold increase relative to the wild-type at the protein level). Studies of the two UTR mutants identified by a modified screening procedure showed that their expression is stimulated to a similar extent at both the transcript and protein product levels. For one such mutant a model analysis of the transcription kinetics showed significant evidence of a difference in the transcription rate (about 18-fold higher than the wild type), while there was no evidence of a difference in transcript stability. The two UTR sequences also stimulated expression from a constitutive σ(70)-dependent promoter (P1/P(anti-tet)), demonstrating that the UTR at the DNA or RNA level has a hitherto unrecognized role in transcription.
Collapse
Affiliation(s)
- Laila Berg
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
2
|
A novel bicistronic vector for overexpressing Mycobacterium tuberculosis proteins in Escherichia coli. Protein Expr Purif 2008; 65:230-7. [PMID: 19162193 DOI: 10.1016/j.pep.2008.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 01/24/2023]
Abstract
A putative DNA glycosylase encoded by the Rv3297 gene (MtuNei2) has been identified in Mycobacterium tuberculosis. Our efforts to express this gene in Escherichia coli either by supplementing tRNAs for rare codons or optimizing the gene with preferred codons for E. coli resulted in little or no expression. On the other hand, high-level expression was observed using a bicistronic expression vector in which the target gene was translationally coupled to an upstream leader sequence. Further comparison of the predicted mRNA secondary structures supported the hypothesis that mRNA secondary structure(s) surrounding the translation initiation region (TIR), rather than codon usage, played the dominant role in influencing translation efficiency, although manipulation of codon usage or tRNA supplementation did further enhance expression in the bicistronic vector. Addition of a cleavable N-terminal tag also facilitated gene expression in E. coli, possibly through a similar mechanism. However, since cleavage of N-terminal tags is determined by the amino acid at the P(1)' position downstream of the protease recognition sequence and results in the addition of an extra amino acid in front of the N-terminus of the protein, this strategy is not particularly amenable to Fpg/Nei family DNA glycosylases which carry the catalytic proline residue at the P(1)' position and require a free N-terminus. On the other hand, the bicistronic vector constructed here is potentially valuable particularly when expressing proteins from G/C rich organisms and when the proteins carry proline residues at the N-terminus in their native form. Thus the bicistronic expression system can be used to improve translation efficiency of mRNAs and achieve high-level expression of mycobacterial genes in E. coli.
Collapse
|
3
|
Flaschel E, Friehs K. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods. Biotechnol Adv 2003; 11:31-77. [PMID: 14544808 DOI: 10.1016/0734-9750(93)90409-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advancement of genetic engineering has allowed to produce an impressive number of proteins on a scale which would not have been achieved by classical biotechnology. At the beginning of this development research was focussed on elucidating the mechanisms of protein overexpression. The appearance of inclusion bodies may illustrate the success. In the meantime, genetic engineering is not only expected to achieve overexpression, but to improve the whole process of protein production. For downstream processing of recombinant proteins, the synthesis of fusion proteins is of primary importance. Fusion with certain proteins or peptides may protect the target protein from proteolytic degradation and may alter its solubility. Intracellular proteins may be translocated by means of fusions with signal peptides. Affinity tags as fusion complements may render protein separation and purification highly selective. These methods as well as similar ones for improving the downstream processing of proteins will be discussed on the basis of recent literature.
Collapse
Affiliation(s)
- E Flaschel
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Fermentationstechnik, Bielefeld, Germany
| | | |
Collapse
|
4
|
Ruiz-Echevarría MJ, de la Cueva G, Díaz-Orejas R. Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in the parD stability system of plasmid R1. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:599-609. [PMID: 7476860 DOI: 10.1007/bf02423456] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parD stability system of plasmid R1 is an auto-regulated operon containing two genes, kis and kid, that code, respectively, for a killer protein (Kid) and for an antagonist of Kid action (Kis protein). A polycistronic transcript and a shorter mRNA, coding only for Kis and ending in a stem-loop sequence, have been identified as the main parD transcripts in cells carrying a derepressed parD operon. In this communication we show that both parD mRNAs have a half-life close to 1 min and are present in similar amounts. Using an assay based on cell-free extracts of Escherichia coli, we demonstrate that the short kis mRNA originates from limited degradation of the bicistronic parD transcript and that the stem-loop structure within the 5' end of the kid gene is specifically required for the formation of this short transcript. In vivo experiments show that synthesis of Kis is required for efficient synthesis of Kid. These data indicate that RNA processing and translational coupling are important mechanisms that modulate the differential expression of the two genes, kis and kid, in the bicistronic parD operon.
Collapse
|
5
|
de Smit MH, Hoefkens P, de Jong G, van Duin J, van Knippenberg PH, van Eijk HG. Optimized bacterial production of nonglycosylated human transferrin and its half-molecules. Int J Biochem Cell Biol 1995; 27:839-50. [PMID: 7584619 DOI: 10.1016/1357-2725(95)00040-v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transferrin is a glycoprotein functioning in iron transport in higher eukaryotes, and consists of two highly homologous domains. To study the function of the glycan residues attached exclusively to the C-terminal domain, we have constructed a plasmid allowing production of nonglycosylated human transferrin in Escherichia coli. By molecular biological and genetic techniques, production was stepped up to 60 mg/l. Similar plasmids were constructed for production of the two half-transferrins. The recombinant proteins accumulate in inclusion-body-like aggregates, where they appear to bind iron without causing bacteriostasis. Proteins active in iron binding have been purified from these inclusion bodies.
Collapse
Affiliation(s)
- M H de Smit
- Leiden Institute of Chemistry, Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Koo J, Spremulli L. Effect of the secondary structure in the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase messenger RNA on translational initiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37314-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
de Smit MH, van Duin J. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Mol Biol 1994; 235:173-84. [PMID: 8289239 DOI: 10.1016/s0022-2836(05)80024-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Translational efficiency in Escherichia coli is in part determined by the Shine-Dalgarno (SD) interaction, i.e. the base-pairing of the 3' end of 16S ribosomal RNA to a stretch of complementary nucleotides in the messenger, located just upstream of the initiation codon. Although a large number of mutations in SD sequences have been produced and analysed, it has so far not been possible to find a clear-cut quantitative relationship between the extent of the complementarity to the rRNA and translational efficiency. This is presumably due to a lack of information about the secondary structures of the messengers used, before and after mutagenesis. Such information is crucial, because intrastrand base-pairing of a ribosome binding site can have a profound influence on its translational efficiency. By site-directed mutagenesis, we have varied the extent of the SD complementarity in the coat-protein gene of bacteriophage MS2. The ribosome binding site of this gene is known to adopt a simple hairpin structure. Substitutions in the SD region were combined with other mutations, which altered the stability of the structure in a predictable way. We find that mutations reducing the SD complementarity by one or two nucleotides diminish translational efficiency only if ribosome binding is impaired by the structure of the messenger. In the absence of an inhibitory structure, these mutations have no effect. In other words, a strong SD interaction can compensate for a structured initiation region. This can be understood by considering translational initiation on a structured ribosome binding site as a competition between intramolecular base-pairing of the messenger and binding to a 30 S ribosomal subunit. A good SD complementarity provides the ribosome with an increased affinity for its binding site, and thereby enhances its ability to compete against the secondary structure. This function of the SD interaction closely parallels the RNA-unfolding capacity of ribosomal protein S1. By comparing the expression data from mutant and wild-type SD sequences, we have estimated the relative contribution of the SD base-pairs to ribosome-mRNA affinity. Quantitatively, this contribution corresponds quite well with the theoretical base-pairing stabilities of the wild-type and mutant SD interactions.
Collapse
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Gorlaeus Laboratories, University of Leiden, The Netherlands
| | | |
Collapse
|
8
|
van Himbergen J, van Geffen B, van Duin J. Translational control by a long range RNA-RNA interaction; a basepair substitution analysis. Nucleic Acids Res 1993; 21:1713-7. [PMID: 8493088 PMCID: PMC309405 DOI: 10.1093/nar/21.8.1713] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the two mechanisms that regulate expression of the replicase cistron in the single stranded RNA coliphages is translational coupling. This mechanism prevents ribosomes from binding at the start of the replicase cistron unless the upstream coat cistron is being translated. Genetic analysis had identified a maximal region of 132 nucleotides in the coat gene over which ribosomes should pass to activate the replicase start. Subsequent deletion studies in our laboratory had further narrowed down the regulatory region to 12 nucleotides. Here, we identify a long-distance RNA-RNA interaction of 6 base pairs as the basis of the translational polarity. The 3' side of the complementarity region is located in the coat-replicase intercistronic region, some 20 nucleotides before the start codon of the replicase. The 5' side encodes amino acids 31 and 32 of the coat protein. Mutations that disrupt the long-range interaction abolish the translational coupling. Repair of basepairing by second site base substitutions restores translational coupling.
Collapse
Affiliation(s)
- J van Himbergen
- Department of Biochemistry, Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | |
Collapse
|
9
|
Friehs K, Reardon KF. Parameters influencing the productivity of recombinant E. coli cultivations. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1993; 48:53-77. [PMID: 8460577 DOI: 10.1007/bfb0007196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the past 10 to 15 years, many of the promises of microbial genetic engineering have been realized: the use of recombinant Escherichia coli has moved from the laboratory to the production facility, and the manufacture of therapeutic recombinant proteins such as human growth hormone and interleukins is a rapidly growing industry. Along with this progress, however, have come new problems to solve: bioreactor operators have discovered that large-scale cultivations of plasmid-containing bacteria do not behave in exactly the same way as those of plasmid-free cells, plasmid stability has been recognized as a major hurdle, and the protein product might not be present in a soluble form but rather as intracellular granules that resist solubilization. These and other difficulties represent a new generation of challenges for genetic engineering. However, genetic engineering can do more than solve these problems. Molecular biological techniques also have the ability to create new opportunities: to produce new compounds, to use cheaper substrates, to facilitate downstream processing, and to optimize production in new ways. The productivity of a cultivation can generally be expressed as the product of the cell density and the specific biological activity. Both of these parameters are influenced by a variety of factors. For recombinant cultivations, though, the level of biological activity, a reflection of the plasmid copy number and expression efficiency, is the more interesting and important consideration and will therefore be given more attention in our review. In this contribution, our general goal is to discuss the factors that influence the productivity of recombinant E. coli cultivations, covering parameters relating to DNA; parameters relating to protein synthesis; parameters relating to proteins; and parameters relating to downstream processing. The object is not to tell the reader how to choose the perfect plasmid, host, and cultivation conditions, but to make known the many variables involved in designing a recombinant process and to point out recent and potential advances made possible by genetic engineering. The discussion focuses on the production of a protein, but many of the same concepts apply to other cultivations of recombinant E. coli, including cases in which the desired product is not a protein or the cells have been designed for a special metabolic capability such as pollutant biodegradation.
Collapse
Affiliation(s)
- K Friehs
- Technische Fakultät, AG Fermentationstechnik, Universität Bielefeld, Germany
| | | |
Collapse
|
10
|
Velázquez L, Camarena L, Reyes JL, Bastarrachea F. Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon. J Bacteriol 1991; 173:3261-4. [PMID: 1673677 PMCID: PMC207927 DOI: 10.1128/jb.173.10.3261-3264.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individual mutations which affected each of the two Shine-Dalgarno sequences at the 5' untranslated region of the gltB gene of Escherichia coli were characterized. They were isolated in plasmids carrying a gltB'-'lacZ protein fusion preceded by the regulatory region of the gltBDF operon. Subcloning and nucleotide sequencing of approximately 1,206 bp of DNA encompassing the gltBDF regulatory region showed that the mutations affected the first base at each of the two identical Shine-Dalgarno sequences, SD1 and SD2, located 40 and 8 bases, respectively, upstream from the putative gltB open reading frame. Only mutation gltB2r227, an adenine in place of a guanine, affecting the first base of SD2, lowered beta-galactosidase expression significantly, i.e., about fivefold. The results suggest that SD2 is the preferred functional site at which ribosomes initiate gltB mRNA translation.
Collapse
Affiliation(s)
- L Velázquez
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, D.F
| | | | | | | |
Collapse
|
11
|
de Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 1990; 87:7668-72. [PMID: 2217199 PMCID: PMC54809 DOI: 10.1073/pnas.87.19.7668] [Citation(s) in RCA: 370] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have quantitatively analyzed the relationship between translational efficiency and the mRNA secondary structure in the initiation region. The stability of a defined hairpin structure containing a ribosome binding site was varied over 12 kcal/mol (1 cal = 4.184 J) by site-directed mutagenesis and the effects on protein yields were analyzed in vivo. The results reveal a strict correlation between translational efficiency and the stability of the helix. An increase in its delta G0 of -1.4 kcal/mol (i.e., less than the difference between an A.U and a G.C pair) corresponds to the reduction by a factor of 10 in initiation rate. Accordingly, a single nucleotide substitution led to the decrease by a factor of 500 in expression because it turned a mismatch in the helix into a match. We find no evidence that exposure of only the Shine-Dalgarno region or the start codon preferentially favors recognition. Translational efficiency is strictly correlated with the fraction of mRNA molecules in which the ribosome binding site is unfolded, indicating that initiation is completely dependent on spontaneous unfolding of the entire initiation region. Ribosomes appear not to recognize nucleotides outside the Shine-Dalgarno region and the initiation codon.
Collapse
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
12
|
Gross G, Mielke C, Hollatz I, Blöcker H, Frank R. RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-beta genes in Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Makoff AJ, Smallwood AE. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucleic Acids Res 1990; 18:1711-8. [PMID: 2110654 PMCID: PMC330587 DOI: 10.1093/nar/18.7.1711] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many heterologous genes when cloned into bacterial expression vectors are poorly expressed because of an inefficient ribosome binding site (RBS). We have constructed a plasmid which expresses human gamma-interferon (gamma-IF), where the level of expression is limited by the RBS. Expression was increased by placing the gamma-IF sequence immediately downstream of a small translated sequence. The production of gamma-IF was dependent upon the efficiency of translation of this upstream cistron and could be increased to very high levels. The same upstream cistron would greatly improve the expression of gamma-IF in a plasmid where the RBS was very poor due to inhibitory secondary structure at the 5' end of its mRNA. However, it would not improve the efficiency of a poor RBS containing a weak Shine-Dalgarno sequence. The general utility of the two-cistron expression strategy to diagnose a weak RBS is discussed.
Collapse
Affiliation(s)
- A J Makoff
- Department of Molecular Biology, Wellcome Biotech, Beckenham, Kent, UK
| | | |
Collapse
|
14
|
de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:1-35. [PMID: 2183291 DOI: 10.1016/s0079-6603(08)60707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
15
|
Spanjaard RA, van Duin J. Translational reinitiation in the presence and absence of a Shine and Dalgarno sequence. Nucleic Acids Res 1989; 17:5501-7. [PMID: 2668889 PMCID: PMC318173 DOI: 10.1093/nar/17.14.5501] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The process of translational reinitiation in Escherichia coli was studied in a two cistron system where expression of the downstream reporter gene was dependent on translation of an upstream reading frame. The dependence was almost absolute. Upstream translation increased expression of the downstream gene by two to three orders of magnitude. This large difference allowed us to quantitate restarts in a meaningful manner. In the absence of a Shine and Dalgarno (SD) region reinitiation occurred but its efficiency was about 10% of that found in the SD carrying counterpart. We discuss three ways by which translational coupling between neighboring cistrons can be enforced.
Collapse
Affiliation(s)
- R A Spanjaard
- Department of Biochemistry, University of Leiden, The Netherlands
| | | |
Collapse
|