1
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
2
|
Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri. J Bacteriol 2013; 195:5567-76. [PMID: 24123819 DOI: 10.1128/jb.00261-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human microbiome-derived strains of Lactobacillus reuteri potently suppress proinflammatory cytokines like human tumor necrosis factor (TNF) by converting the amino acid l-histidine to the biogenic amine histamine. Histamine suppresses mitogen-activated protein (MAP) kinase activation and cytokine production by signaling via histamine receptor type 2 (H2) on myeloid cells. Investigations of the gene expression profiles of immunomodulatory L. reuteri ATCC PTA 6475 highlighted numerous genes that were highly expressed during the stationary phase of growth, when TNF suppression is most potent. One such gene was found to be a regulator of genes involved in histidine-histamine metabolism by this probiotic species. During the course of these studies, this gene was renamed the Lactobacillus reuteri-specific immunoregulatory (rsiR) gene. The rsiR gene is essential for human TNF suppression by L. reuteri and expression of the histidine decarboxylase (hdc) gene cluster on the L. reuteri chromosome. Inactivation of rsiR resulted in diminished TNF suppression in vitro and reduced anti-inflammatory effects in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of acute colitis. A L. reuteri strain lacking an intact rsiR gene was unable to suppress colitis and resulted in greater concentrations of serum amyloid A (SAA) in the bloodstream of affected animals. The PhdcAB promoter region targeted by rsiR was defined by reporter gene experiments. These studies support the presence of a regulatory gene, rsiR, which modulates the expression of a gene cluster known to mediate immunoregulation by probiotics at the transcriptional level. These findings may point the way toward new strategies for controlling gene expression in probiotics by dietary interventions or microbiome manipulation.
Collapse
|
3
|
Linares DM, Martín M, Ladero V, Alvarez MA, Fernández M. Biogenic Amines in Dairy Products. Crit Rev Food Sci Nutr 2011; 51:691-703. [DOI: 10.1080/10408398.2011.582813] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Trip H, Mulder NL, Rattray FP, Lolkema JS. HdcB, a novel enzyme catalysing maturation of pyruvoyl-dependent histidine decarboxylase. Mol Microbiol 2011; 79:861-71. [PMID: 21208300 DOI: 10.1111/j.1365-2958.2010.07492.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyruvoyl-dependent histidine decarboxylases are produced as proenzymes that mature by cleavage followed by formation of the pyruvoyl prosthetic group. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 that consists of the pyruvoyl-dependent histidine decarboxylase HdcA and the histidine/histamine exchanger HdcP was functionally expressed in Lactococcus lactis. The operon encoding the pathway contains in addition to the hdcA and hdcP genes a third gene hdcB. Expression of different combinations of the genes in L. lactis and Escherichia coli followed by analysis of the protein products demonstrated the involvement of HdcB in the cleavage of the HdcA proenzyme. The HdcA proenzyme and HdcB protein were purified to homogeneity and cleavage and activation of the histidine decarboxylase activity was demonstrated in vitro. Substoichiometric amounts of HdcB were required to cleave HdcA showing that HdcB functions as an enzyme. In agreement, expression levels of HdcB in the cells were low relative to those of HdcA. The turnover number of HdcB in vitro was extremely low (0.05 min⁻¹) which was due to a very slow association/dissociation of the enzyme/substrate complex. In fact, HdcB was shown to co-purify both with the HdcA S82A mutant that mimics the proenzyme and with the mature HdcA complex.
Collapse
Affiliation(s)
- Hein Trip
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
5
|
Calles-Enríquez M, Eriksen BH, Andersen PS, Rattray FP, Johansen AH, Fernández M, Ladero V, Alvarez MA. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression. Appl Environ Microbiol 2010; 76:6231-8. [PMID: 20656875 PMCID: PMC2937487 DOI: 10.1128/aem.00827-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/11/2010] [Indexed: 11/20/2022] Open
Abstract
Histamine, a toxic compound that is formed by the decarboxylation of histidine through the action of microbial decarboxylases, can accumulate in fermented food products. From a total of 69 Streptococcus thermophilus strains screened, two strains, CHCC1524 and CHCC6483, showed the capacity to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high expression levels correlated with high histamine levels. Limited expression was evident during the lag and exponential growth phases. Low-temperature (4 degrees C) incubation of milk inoculated with a histamine-producing strain showed lower levels of histamine than did inoculated milk kept at 42 degrees C. This reduction was attributed to a reduction in the activity of the HdcA enzyme itself rather than a reduction in gene expression or the presence of a lower cell number.
Collapse
Affiliation(s)
- Marina Calles-Enríquez
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Benjamin Hjort Eriksen
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Pia Skov Andersen
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Fergal P. Rattray
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Annette H. Johansen
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - María Fernández
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| | - Miguel A. Alvarez
- Instituto de Productos Lácteos de Asturias, CSIC, Crta. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain, Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark
| |
Collapse
|
6
|
Landete JM, De las Rivas B, Marcobal A, Muñoz R. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr 2008; 48:697-714. [PMID: 18756395 DOI: 10.1080/10408390701639041] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Histamine poisoning is caused by the ingestion of food containing high levels of histamine, a biogenic amine. Histamine could be expected in virtually all foods that contain proteins or free histidine and that are subject to conditions enabling microbial activity. In most histamine-containing foods the majority of the histamine is generated by decarboxylation of the histidine through histidine decarboxylase enzymes derived from the bacteria present in food. Bacterial histidine decarboxylases have been extensively studied and characterized in different organisms and two different enzymes groups have been distinguished, pyridoxal phosphate- and the pyruvoyl-dependent. Pyridoxal phosphate-dependent histidine decarboxylases are encountered in gram-negative bacteria belonging to various species. Pyruvoyl-dependent histidine decarboxylases are found in gram-positive bacteria and specially in lactic acid bacteria implicated in food fermentation or spoilage. The molecular organization of the genes involved in histamine production have been elucidated in several histamine-producer bacteria. This molecular knowledge has led to the development of molecular methods for the rapid detection of bacteria possessing the ability to produce histamine. The detection of histamine-producer bacteria is of great importance for its potential health hazard as well as from an economic point of view since products exceeding recommended limits can be refused in commercial transactions.
Collapse
Affiliation(s)
- José María Landete
- Departamento de Microbiologia, Instituto de Fermentaciones Industriales, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
8
|
Lucas PM, Wolken WAM, Claisse O, Lolkema JS, Lonvaud-Funel A. Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol 2005; 71:1417-24. [PMID: 15746344 PMCID: PMC1065165 DOI: 10.1128/aem.71.3.1417-1424.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 10/05/2004] [Indexed: 11/20/2022] Open
Abstract
Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.
Collapse
Affiliation(s)
- Patrick M Lucas
- Faculté d'Oenologie, UMR 1219, INRA-Université Victor Segalen Bordeaux 2, 351, cours de la Libération, 33405 Talence, France
| | | | | | | | | |
Collapse
|
9
|
Fernández M, Linares DM, Alvarez MA. Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J Food Prot 2004; 67:2521-9. [PMID: 15553636 DOI: 10.4315/0362-028x-67.11.2521] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enzymatic decarboxylation of tyrosine produces tyramine, the most abundant biogenic amine in dairy products-especially in cheeses. The screening of lactic acid bacteria isolated from different artisanal cheeses and a number of microbial collections identified 22 tyramine-producing strains belonging to different genera. The Lactococcus lactis strain IPLA 655 was selected, and the genes encoding a putative tyrosyl tRNA synthetase, a tyrosine decarboxylase (tdcA), and a tyrosine-tyramine antiporter, found together as a cluster, were sequenced. The disruption of tdcA yielded a strain unable to produce tyramine. Comparison of the L. lactis IPLA 655 tdcA gene with database tdcA sequences led to the design of two primers for use in a PCR method that identified potential tyramine-producing strains. The proposed method can use purified DNA, isolated colonies, milk, curd, and even cheese as a template. Molecular tools for the rapid detection of tyramine-producing bacteria at any time during the fermentation process could help prevent tyramine accumulation in fermented foods. The proposed technique could be of great use to the food industry.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | |
Collapse
|
10
|
Abstract
Lactobacilli play a substantial role in food biotechnology and influence our quality of life by their fermentative and probiotic properties. Despite their obvious importance in fermentation ecology and biotechnology only recent years have brought some insight into the genetics of lactobacilli. These genetic investigations allow the elucidation of traits determinative for competitiveness and ecology and thus product safety and quality. They have concentrated only on a small selection of lactobacilli whereas others are hardly touched or remained recalcitrant to genetic analysis and manipulation. The knowledge gained on the biochemistry, physiology, ecology and especially genetics is a prerequisite for the deliberate application and improved handling of lactobacilli in traditional and novel applications. In this review, the achievements in the genetics of lactobacilli are described including detection systems, genetic elements, host vector systems, gene cloning and expression and risk assessment of genetically engineered lactobacilli.
Collapse
Affiliation(s)
- R F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | |
Collapse
|
11
|
|
12
|
Abstract
This paper reviews the present knowledge of the structure and properties of small (< 5 kb) plasmids present in Lactobacillus spp. The data show that plasmids from Lactobacillus spp., like many plasmids from other Gram-positive bacteria, display a modular organization and replicate by a mechanism of rolling circle replication. Structurally, plasmids from lactobacilli are closely related to plasmids from other Gram-positive bacteria. They contain elements (plus- and minus origin of replication, element(s) for control of plasmid replication, mobilization function) showing extensive similarity to analogous elements in plasmids from these other organisms. It is believed that lactobacilli have acquired such elements by intra- and/or intergenic transfer mechanisms. The first part of the review is concluded with a description of plasmid vectors with a Lactobacillus replicon and integrative vectors, including data concerning their structural and segregational stability. In the second part of this review we describe the progress that has been made during the last few years in identifying and characterizing elements that control expression of genetic information in lactobacilli. Based on the sequence of eleven identified and twenty presumed promoters, some preliminary conclusions can be drawn regarding the structure of Lactobacillus promoters. A typical Lactobacillus promoter shows significant similarity to promoters from E. coli and B. subtilis. An analysis of published sequences of seventy genes indicates that the region encompassing the translation start codon AUG also shows extensive similarity to that of E. coli and B. subtilis. Codon usage of Lactobacillus genes is not random and shows interspecies as well as intraspecies heterogeneity. Interspecies differences may, in part, be explained by differences in G+C content of different lactobacilli. Differences in gene expression levels can, to a large extent, account for intraspecies differences of codon usage bias. Finally, we review the knowledge that has become available concerning protein secretion and heterologous gene expression in lactobacilli. This part is concluded with a compilation of data on the expression in Lactobacillus of heterologous genes under the control of their own promoter or under control of a Lactobacillus promoter.
Collapse
Affiliation(s)
- P H Pouwels
- Department Molecular Genetics and Gene-Technology, TNO Medical Biological Laboratory, Rijswijk, The Netherlands
| | | |
Collapse
|
13
|
Pishko EJ, Robertus JD. Site-directed alteration of three active-site residues of a pyruvoyl-dependent histidine decarboxylase. Biochemistry 1993; 32:4943-8. [PMID: 8490030 DOI: 10.1021/bi00069a032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The active site of histidine decarboxylase (HDC) from Lactobacillus 30a contains a pyruvoyl cofactor sitting at the interface of two molecules in a trimer. Although exhibiting hyperbolic kinetics at pH 4.8, near its optimum, HDC is cooperative at pH 7.6, indicating that the units of the trimer communicate. A Hill plot analysis shows that HDC, at pH 7.6, can be described by a two-state model. The tense (T) state has an apparent Km for histidine of 50 mM, while the relaxed (R) state has a Km of 5 mM. To explore the catalytic mechanism, three of the cross-boundary active-site residues were altered by site-directed mutagenesis and their effects observed. Ile-59 is known to act as lid on the substrate binding pocket; it was converted to Ala (I59A) and to Val (I59V). The former was inactive, attesting to the importance of this residue in the mechanism. The I59V mutant showed a decrease in Km and in kcat at pHs 4.8 and 7.6. Ile-59 appears to help orient substrate properly for catalysis; decreasing its size expands the binding site. This may allow the substrate to bind more readily, but in a number of conformations which are not optimal for catalysis. Conversion of Tyr-62 to Phe (Y62F) had no effect on catalysis but raised the Km 7-fold at pH 4.8. Asp-63 appears to form an ion pair to the substrate imidazolium. Conversion to the neutral amide (D63N) had no effect on the kcat, but raised the Km 240-fold at pH 4.8. This is consistent with the notion that the ion pair is up to 3 kcal/mol stronger than a simple hydrogen bond with the substrate. The mutant had no detectable activity at pH 7.6.
Collapse
Affiliation(s)
- E J Pishko
- Biochemical Institute, University of Texas, Austin 78712
| | | |
Collapse
|