1
|
Nagasawa Y, Takenaka M, Kaimori J, Matsuoka Y, Akagi Y, Tsujie M, Imai E, Hori M. Rapid and diverse changes of gene expression in the kidneys of protein-overload proteinuria mice detected by microarray analysis. Nephrol Dial Transplant 2001; 16:923-31. [PMID: 11328896 DOI: 10.1093/ndt/16.5.923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Microarray is a method that allows the analysis of a large number of genes at the same time. We applied this method to show the difference of gene expression in the kidney caused by proteinuria. METHODS An experimental mouse model of protein overload was prepared by bovine serum albumin injection. The mRNAs of kidneys isolated after 0, 1, 2, 3 and 4 weeks loading were analysed by Northern blotting. We analysed about 18000 genes by microarray. The expression patterns of the microarray were displayed on control, 1 and 3 weeks of protein overload using the clustering procedure. A clone showing the greatest changes of up-regulation in the kidney was cloned and analysed by in situ hybridization and immunohistochemistry. RESULTS Over 1600 kinds of gene expression were confirmed in control kidneys. Proteinuria caused systematic changes of gene expression demonstrated by the cluster analysis. The up-regulation of osteopontin mRNA was shown and confirmed by Northern blot analysis. One of the clones showing the largest changes, AA275245, was isolated and characterized. It revealed that AA275245 was an unreported 3' non-coding region of vinculin mRNA which was associated with cytoskeleton proteins (e.g. alpha-actinin, talin, F-actin). Immunohistochemistry and in situ hybridization showed that this clone was identified in glomeruli as a mesangial pattern. The detected signal intensity using both methods, however, was virtually identical in control and disease kidney models. All data including images and analysed signal intensities are accessible on the web site. CONCLUSION The microarray analysis revealed that the renal gene expression pattern was changed dynamically in mice with experimentally induced proteinuria within a few weeks.
Collapse
Affiliation(s)
- Y Nagasawa
- Department of Internal Medicine and Therapeutics, Graduate School of Medicine (A8), Osaka University, 2-2 Yamadaoka, Suita, Osaka 560-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Nakajima Y, Yamagishi T, Yoshimura K, Nomura M, Nakamura H. Antisense oligodeoxynucleotide complementary to smooth muscle alpha-actin inhibits endothelial-mesenchymal transformation during chick cardiogenesis. Dev Dyn 1999; 216:489-98. [PMID: 10633868 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<489::aid-dvdy17>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
alpha-Smooth-muscle actin (SMA) is the major isoform of adult vascular tissues. During early development, SMA is expressed in various mesodermally derived tissues in a spatiotemporally restricted manner; however, its exact role remains unknown. We examined its role in the formation of chicken atrioventricular (AV) endocardial cushion tissue. This developmental process possesses the characteristics of endothelial-mesenchymal transformation and is partly TGF beta-dependent. Immunohistochemistry showed that SMA was (1) expressed homogeneously in the newly formed appendages of transforming endothelial/mesenchymal cells, and (2) distributed in a punctate manner in the lamellipodia/filopodia of invading mesenchymal cells. Antisense oligodeoxynucleotide (ODNs) specific for SMA reduced both SMA expression and mesenchymal formation in AV endothelial cells cultured with myocardium on a collagen gel lattice. Perturbation of SMA by antisense ODN also inhibited TGF beta-inducible migratory appendage formation in a cultured AV endothelial monolayer. However, it did not inhibit cell:cell separation or cellular hypertrophy. These results suggest that the expression of SMA is necessary for migratory appendage formation during the TGF beta-dependent initial phenotypic changes that occur in endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy, Saitama Medical School, Japan.
| | | | | | | | | |
Collapse
|
3
|
Okamoto-Inoue M, Kamada S, Kimura G, Taniguchi S. The induction of smooth muscle alpha actin in a transformed rat cell line suppresses malignant properties in vitro and in vivo. Cancer Lett 1999; 142:173-8. [PMID: 10463773 DOI: 10.1016/s0304-3835(99)00150-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A normal rat fibroblast 3Y1 cell line expresses smooth muscle a actin and the expression of alpha actin is suppressed in the transformant (SR-3Y1-2) induced by a Raus sarcoma virus. Gene transfer with smooth muscle alpha actin into the SR-3Y1-2 cell line reduced growth and invasiveness in vitro, as well as tumor growth and experimental lung metastasis depending on the expression of the alpha actin. These results indicated that smooth muscle alpha actin is involved in the regulation of cell growth as well as cell motility and thus leads to the suppression of malignant phenotypes in transformed cells.
Collapse
Affiliation(s)
- M Okamoto-Inoue
- Department of Dermatology, Kurume University School of Medicine, Japan
| | | | | | | |
Collapse
|
4
|
Rønnov-Jessen L. Stromal Reaction to Invasive Cancer: The Cellular Origin of the Myofibroblast and Implications for Tumor Development. Breast J 1996. [DOI: 10.1111/j.1524-4741.1996.tb00117.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Rønnov-Jessen L, Petersen OW. A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 1996; 134:67-80. [PMID: 8698823 PMCID: PMC2120928 DOI: 10.1083/jcb.134.1.67] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation of monoclonal antibody (mAb) 1A4, which recognizes specifically the NH2-terminal Ac-EEED sequence of alpha-sm actin, significantly increased the frequency of migrating cells over that obtained with an unrelated antibody or a mAb against beta-actin. Time-lapse video microscopy revealed migratory rates of 4.8 and 3.0 microns/h, respectively. To knock out the alpha-sm actin protein, several antisense phosphorothioate oligodeoxynucleotide (ODNs) were tested. One of these, 3'UTI, which is complementary to a highly evolutionary conserved 3' untranslated (3'UT) sequence of alpha-sm actin mRNA, was found to block alpha-sm actin synthesis completely without affecting the synthesis of any other proteins as analyzed by two-dimensional gel electrophoresis. Targeting by antisense 3'UTI significantly increased motility compared with the corresponding sense ODN. alpha-Sm actin inhibition also led to the formation of less prominent focal adhesions as revealed by immunofluorescence staining against vinculin, talin, and beta1-integrin. We propose that an important function of filamentous alpha-sm actin is to immobilize the cells.
Collapse
Affiliation(s)
- L Rønnov-Jessen
- Structural Cell Biology Unit, Institute of Medical Anatomy, the Panum Institute, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Davey HW, Wildeman AG. Molecular analysis of bovine actin gene and pseudogene sequences: expression of nonmuscle and striated muscle isoforms in adult tissues. DNA Cell Biol 1995; 14:555-63. [PMID: 7598810 DOI: 10.1089/dna.1995.14.555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Most studies on the tissue distribution of actin isoform transcripts have been done in small mammals such as rat and mouse. We have begun a characterization of the actin gene family in a large mammal, the bovine. The alpha skeletal gene was isolated, and an isoform-specific probe to the 3' untranslated region of the transcript identified. This probe, in combination with isoform specific probes for alpha cardiac, beta nonmuscle, and gamma nonmuscle actins, was used to examine expression of nonmuscle and striated muscle actin gene transcription in different tissues. In contrast to other species so far examined, striated muscle isoforms were more strictly tissue specific, with virtually no alpha cardiac isoform transcripts detected in skeletal muscle and almost no alpha skeletal transcripts in cardiac tissue. The distribution of the beta and gamma nonmuscle actins was also unique in bovine compared to other species. A partial beta-actin pseudogene, and the chromosomal DNA flanking one end of it, were also cloned and sequenced. This chromosomal site was found to be homologous to a viral integration site previously identified in simian virus 40 (SV40)-transformed rat cells, suggesting that this region of the chromosome may be a preferred target for insertion events.
Collapse
Affiliation(s)
- H W Davey
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Kamada S, Miwa T. A protein binding to CArG box motifs and to single-stranded DNA functions as a transcriptional repressor. Gene 1992; 119:229-36. [PMID: 1398104 DOI: 10.1016/0378-1119(92)90276-u] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A CArG box motif [CC(A+T-rich)6GG] is one of the DNA elements required for muscle-specific gene transcription. Nuclear factors in mouse C2 myogenic cells strongly bind to the CArG box in the first intron of the gene (Sm alpha-A) encoding human smooth muscle alpha-actin. To clone cDNAs of the CArG box-binding factor (CBF), lambda gt11 cDNA expression libraries from C2 cells were screened for in situ DNA binding specific for this CArG box sequence. The 1.6-kb cDNA (CBF-A) encoding 285 amino acids (aa) was obtained, and a beta-galactosidase fusion protein, bacterially produced from the cDNA, bound to DNA fragments containing several CArG boxes. When the expression level of CBF-A in C2 cells increased by transfection of CBF-A expression plasmids, Sm alpha-A transcription was repressed. The deduced aa sequence of CBF-A is similar to some single-stranded (ss) nucleic acid-binding proteins. The fusion protein could bind to ssDNA, whereas CBF in C2 cell nuclear extracts could not. From these results, CBF-A is a novel CArG box-, ssDNA- and RNA-binding protein, as well as a repressive transcriptional factor.
Collapse
Affiliation(s)
- S Kamada
- Department of Oncogene Research, Osaka University, Japan
| | | |
Collapse
|
8
|
Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 1991. [PMID: 1710027 DOI: 10.1128/mcb.11.6.3296] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.
Collapse
|
9
|
Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G, Ueyama H, Kakunaga T. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 1991; 11:3296-306. [PMID: 1710027 PMCID: PMC360182 DOI: 10.1128/mcb.11.6.3296-3306.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.
Collapse
Affiliation(s)
- T Miwa
- Department of Oncogene Research, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sugimoto T, Ueyama H, Hosoi H, Inazawa J, Kato T, Kemshead JT, Reynolds CP, Gown AM, Mine H, Sawada T. Alpha-smooth-muscle actin and desmin expressions in human neuroblastoma cell lines. Int J Cancer 1991; 48:277-83. [PMID: 2019470 DOI: 10.1002/ijc.2910480221] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural crest gives rise to a variety of tissues, including peripheral neurons, Schwann cells, melanocytes and ectomesenchymal cells, which include the smooth-muscle cells of large arteries. Cell lines derived from neuroblastoma (a neural-crest tumor) exhibit at least 2 distinct morphological cell types, a neuroblastic phenotype (N-type) and an epithelial-like phenotype (S-type) with characteristics of substrate-adhesiveness. We have analyzed 17 human neuroblastoma cell lines using a panel of monoclonal antibodies (MAbs) against cytoskeletal proteins. Three neuroblastoma cell lines (KP-N-SI, KP-N-YN and SMS-KCN) bound an alpha-smooth-muscle actin antibody. In addition, one of these lines (KP-N-SI) bound anti-desmin MAbs as determined by indirect immunofluorescence. A total of 8 cloned cell lines were obtained from the above parent cell lines. These were composed of either N- or S-type cells and were confirmed to have the same neuroblastoma origin as each parent cell line by chromosomal analysis. Alpha-smooth-muscle actin and desmin were demonstrated in the S-type cloned cells by indirect immunofluorescence, as well as by 2-dimensional Western blot analysis. These results were confirmed by Northern blot analysis using a specific probe (pSH alpha SMA-3' UT) to human alpha-smooth-muscle actin mRNA. These ascertain the presence of alpha-smooth-muscle actin and desmin in neuroblastoma cell lines. These data show that, in addition to giving rise to cells with neural, Schwann-cell and melanocyte markers, neuroblastoma can also give rise to the cells expressing smooth-muscle cell markers.
Collapse
Affiliation(s)
- T Sugimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakano Y, Nishihara T, Sasayama S, Miwa T, Kamada S, Kakunaga T. Transcriptional regulatory elements in the 5' upstream and first intron regions of the human smooth muscle (aortic type) alpha-actin-encoding gene. Gene 1991; 99:285-9. [PMID: 2022339 DOI: 10.1016/0378-1119(91)90140-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the nucleotide (nt) sequence of 5.5 kb including the 5' flanking, first untranslated exon and first intron regions of the human smooth muscle (SM) (aortic type) alpha-actin-(Sm alpha A)- encoding gene. The promoter region and a part of the first intron show remarkably high sequence conservation with equivalent regions of the chicken gene, and contain multiple transcriptional regulatory elements. From transient chloramphenicol acetyltransferase gene (cat) expression assays in SM cells, a DNA fragment from nt -123 to +49 containing two CArG boxes showed strong positive promoter activity, whereas a far upstream region from nt -253 to -124 showed a negative effect. The conserved region in the first intron also contains the CArG box and showed an enhancer activity. Therefore, the human SM alpha A gene is controlled under positive and negative mechanisms.
Collapse
Affiliation(s)
- Y Nakano
- Department of Oncogene Research, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Ueyama H, Bruns G, Kanda N. Assignment of the vascular smooth muscle actin gene ACTSA to human chromosome 10. JINRUI IDENGAKU ZASSHI. THE JAPANESE JOURNAL OF HUMAN GENETICS 1990; 35:145-50. [PMID: 2398629 DOI: 10.1007/bf01876459] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human vascular smooth muscle actin gene (ACTSA) was cloned and its unique sequence was used as the hybridization probe for Southern blot analysis of DNAs from 18 rodent-human somatic cell hybrids; the gene was assigned to human chromosome 10. Regional mapping by in situ hybridization showed that the gene is located on the long arm (q22-q24) of the chromosome. Thus, the gene is on a different chromosome from the other four actin genes so far examined.
Collapse
Affiliation(s)
- H Ueyama
- Department of Medical Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | | | | |
Collapse
|