1
|
Williams AN, Sorout N, Cameron AJ, Stavrinides J. The Integration of Genome Mining, Comparative Genomics, and Functional Genetics for Biosynthetic Gene Cluster Identification. Front Genet 2020; 11:600116. [PMID: 33343637 PMCID: PMC7744662 DOI: 10.3389/fgene.2020.600116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a worldwide health crisis for which new antibiotics are needed. One strategy for antibiotic discovery is identifying unique antibiotic biosynthetic gene clusters that may produce novel compounds. The aim of this study was to demonstrate how an integrated approach that combines genome mining, comparative genomics, and functional genetics can be used to successfully identify novel biosynthetic gene clusters that produce antimicrobial natural products. Secondary metabolite clusters of an antibiotic producer are first predicted using genome mining tools, generating a list of candidates. Comparative genomic approaches are then used to identify gene suites present in the antibiotic producer that are absent in closely related non-producers. Gene sets that are common to the two lists represent leading candidates, which can then be confirmed using functional genetics approaches. To validate this strategy, we identified the genes responsible for antibiotic production in Pantoea agglomerans B025670, a strain identified in a large-scale bioactivity survey. The genome of B025670 was first mined with antiSMASH, which identified 24 candidate regions. We then used the comparative genomics platform, EDGAR, to identify genes unique to B025670 that were not present in closely related strains with contrasting antibiotic production profiles. The candidate lists generated by antiSMASH and EDGAR were compared with standalone BLAST. Among the common regions was a 14 kb cluster consisting of 14 genes with predicted enzymatic, transport, and unknown functions. Site-directed mutagenesis of the gene cluster resulted in a reduction in antimicrobial activity, suggesting involvement in antibiotic production. An integrated approach that combines genome mining, comparative genomics, and functional genetics yields a powerful, yet simple strategy for identifying potentially novel antibiotics.
Collapse
|
2
|
Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988-1005. [PMID: 27272205 DOI: 10.1039/c6np00025h] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.
Collapse
Affiliation(s)
- Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tuebingen, Germany.
| | | | | |
Collapse
|
3
|
Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo) 2013; 66:387-400. [PMID: 23612726 DOI: 10.1038/ja.2013.25] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/12/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Secondary metabolites are a reliable and very important source of medicinal compounds. While these molecules have been mined extensively, genome sequencing has suggested that there is a great deal of chemical diversity and bioactivity that remains to be discovered and characterized. A central challenge to the field is that many of the novel or poorly understood molecules are expressed at low levels in the laboratory-such molecules are often described as the 'cryptic' secondary metabolites. In this review, we will discuss evidence that research in this field has provided us with sufficient knowledge and tools to express and purify any secondary metabolite of interest. We will describe 'unselective' strategies that bring about global changes in secondary metabolite output as well as 'selective' strategies where a specific biosynthetic gene cluster of interest is manipulated to enhance the yield of a single product.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
4
|
Hong H, Leadlay PF, Staunton J. The changing patterns of covalent active site occupancy during catalysis on a modular polyketide synthase multienzyme revealed by ion-trap mass spectrometry. FEBS J 2009; 276:7057-69. [PMID: 19860832 DOI: 10.1111/j.1742-4658.2009.07418.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A catalytically competent, homodimeric diketide synthase comprising the first extension module of the erythromycin polyketide synthase was analysed using MS, after limited proteolysis to release functional domains, to determine the pattern of covalent attachment of substrates and intermediates to active sites during catalysis. Using the natural substrates, the acyltransferase and acylcarrier protein of the loading module were found to be heavily loaded with propionyl starter groups, while the ketosynthase was fully propionylated. The acylcarrier protein of the extension module was partly occupied by the product diketide, and the adjacent chain-releasing thioesterase domain was vacant, implying that the rate-limiting step is transfer of the diketide from the acylcarrier protein to the thioesterase domain. The data suggest an attractive model for preventing iterative chain extension by efficient repriming of the ketosynthase domain after condensation. Use of the alternative starter unit valeryl-CoA produced an altered pattern, in which a significant proportion of the extension acylcarrier protein was loaded with methylmalonate, not diketide, consistent with the condensation step having become an additional slow step. Strikingly, when NADPH was omitted, the extension acylcarrier protein contained methylmalonate and none of the expected keto diketide, in contrast to results obtained previously by mixing individual recombinant domains, showing the importance of also studying intact modules. The detailed patterns of loading of the extension acylcarrier protein (of which there are two in the homodimer) also provided the first evidence for simultaneous loading of both acylcarrier proteins and for the coordination of timing between the two active centres for chain extension.
Collapse
Affiliation(s)
- Hui Hong
- Department of Chemistry, University of Cambridge, UK.
| | | | | |
Collapse
|
5
|
Iida K, Kajiwara M, Inoue-Tanihata T, Fukui M, Nakata T, Oishi T. Efficient synthesis of13C-labelled erythromycin biosynthetic intermediate. 1:S-2-acetylaminoethyl (2R,3R,4R,5R)-3,5-diacetoxy-2,4-dimethyl-4-([13C]methoxy)-heptanethioate. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Iida K, Kajiwara M, Fukui M, Nakata T, Oishi T. Efficient syntheses of13C-labelled erythromycin biosynthetic intermediates. 2: (2S,3S,4S,5R,6R,7R)-3,6,7-trihydroxy-2,4,6-trimethyl[1-13C]nonan-5-olide andS-2-acetylaminoethyl (2R,3S,4S,5R,6S,7R)-3,5,6,7-tetrahydroxy-2,4,6-trimethyl[1-13C]nonanethioate. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Abstract
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA.
| | | |
Collapse
|
8
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibacterial natural products in medicinal chemistry--exodus or revival? Angew Chem Int Ed Engl 2007; 45:5072-129. [PMID: 16881035 DOI: 10.1002/anie.200600350] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Bayer HealthCare AG, Medicinal Chemistry Europe, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
9
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibakterielle Naturstoffe in der medizinischen Chemie – Exodus oder Renaissance? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600350] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Weissman KJ. Polyketide biosynthesis: understanding and exploiting modularity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2671-2690. [PMID: 15539364 DOI: 10.1098/rsta.2004.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyketide-based pharmaceuticals are some of our most important medicines. They are constructed in micro-organisms (typically bacteria and fungi) by gigantic enzyme catalysts called polyketide synthases (PKSs). The organization of PKSs into molecular assembly lines makes them particularly appealing targets for genetic engineering because, in principle, an alteration in the enzyme organization might translate into a predictable change in polyketide structure. Excitingly, this has been shown repeatedly to work in practice, but the efficiency of the engineered PKSs is frequently too low to be useful for large-scale drug synthesis. To reach this goal, researchers need a deeper understanding of the structure and function of these proteins, which are among the most complex in nature. This review highlights some recent experiments which are providing key information about the molecular organization, mechanism and orchestration of these magnificent catalysts, and opening up fresh prospects of truly combinatorial biosynthesis of novel polyketides as leads in drug discovery.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
11
|
Rodriguez E, Hu Z, Ou S, Volchegursky Y, Hutchinson CR, McDaniel R. Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J Ind Microbiol Biotechnol 2003; 30:480-8. [PMID: 12698320 DOI: 10.1007/s10295-003-0045-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/24/2003] [Indexed: 01/11/2023]
Abstract
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms- Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively-to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site ( attB) for phiC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.
Collapse
Affiliation(s)
- Eduardo Rodriguez
- Kosan Biosciences Inc, 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | | | | | |
Collapse
|
12
|
Campelo AB, Gil JA. The candicidin gene cluster from Streptomyces griseus IMRU 3570. MICROBIOLOGY (READING, ENGLAND) 2002; 148:51-59. [PMID: 11782498 DOI: 10.1099/00221287-148-1-51] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 205 kb DNA region from Streptomyces griseus IMRU 3570, including the candicidin biosynthetic gene cluster, was cloned and partially sequenced. Analysis of the sequenced DNA led to identification of genes encoding part of a modular polyketide synthase (PKS), genes for thioesterase, macrolactone ring modification, mycosamine biosynthesis and attachment to the macrolide ring, candicidin export and regulatory proteins. It represents the first extensive genetic characterization of an aromatic polyene macrolide antibiotic biosynthetic gene cluster. Of particular interest is the presence of the CanP1 loading domain (the first described as responsible for the activation of an aromatic starter unit) and the polypeptide CanP3 (carrying modules for the formation of five out of seven conjugated double bonds). Disruption of the pabAB gene that encodes the starter unit of candicidin abolished its production [which was restored when exogenous p-aminobenzoic acid (PABA) was supplied to the culture] and resulted in an enhanced production of another antifungal compound that is barely detected in the wild-type.
Collapse
Affiliation(s)
- Ana Belén Campelo
- Departamento de Ecologı́a, Genética y Microbiologı́a, Área de Microbiologı́a, Facultad de Biologı́a, Universidad de León, 24071 León, Spain1
| | - José A Gil
- Departamento de Ecologı́a, Genética y Microbiologı́a, Área de Microbiologı́a, Facultad de Biologı́a, Universidad de León, 24071 León, Spain1
| |
Collapse
|
13
|
Doumith M, Legrand R, Lang C, Salas JA, Raynal MC. Interspecies complementation in Saccharopolyspora erythraea : elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives. Mol Microbiol 1999; 34:1039-48. [PMID: 10594828 DOI: 10.1046/j.1365-2958.1999.01666.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two glycosyltransferase genes, oleG1 and oleG2, and a putative isomerase gene, oleP1, have previously been identified in the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus. In order to identify which of these two glycosyltransferases encodes the desosaminyltransferase and which the oleandrosyltransferase, interspecies complementation has been carried out, using two mutant strains of Saccharopolyspora erythraea, one strain carrying an internal deletion in the eryCIII (desosaminyltransferase) gene and the other an internal deletion in the eryBV (mycarosyltransferase) gene. Expression of the oleG1 gene in the eryCIII deletion mutant restored the production of erythromycin A (although at a low level), demonstrating that oleG1 encodes the desosaminyltransferase required for the biosynthesis of oleandomycin and indicating that, as in erythromycin biosynthesis, the neutral sugar is transferred before the aminosugar onto the macrocyclic ring. Significantly, when an intact oleG2 gene (presumed to encode the oleandrosyltransferase) was expressed in the eryBV deletion mutant, antibiotic activity was also restored and, in addition to erythromycin A, new bioactive compounds were produced with a good yield. The neutral sugar residue present in these compounds was identified as L-rhamnose attached at position C-3 of an erythronolide B or a 6-deoxyerythronolide B lactone ring, thus indicating a relaxed specificity of the oleandrosyltransferase, OleG2, for both the activated sugar and the macrolactone substrate. The oleP1 gene located immediately upstream of oleG1 was likewise introduced into an eryCII deletion mutant of Sac. erythraea, and production of erythromycin A was again restored, demonstrating that the function of OleP1 is identical to that of EryCII in the biosynthesis of dTDP-D-desosamine, which we have previously proposed to be a dTDP-4-keto-6-deoxy-D-glucose 3, 4-isomerase.
Collapse
Affiliation(s)
- M Doumith
- Infectious Disease Group, Hoechst Marion Roussel, Romainville, France
| | | | | | | | | |
Collapse
|
14
|
Reeves AR, English RS, Lampel JS, Post DA, Vanden Boom TJ. Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea. J Bacteriol 1999; 181:7098-106. [PMID: 10559177 PMCID: PMC94186 DOI: 10.1128/jb.181.22.7098-7106.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional organization of the erythromycin biosynthetic gene (ery) cluster of Saccharopolyspora erythraea has been examined by a variety of methods, including S1 nuclease protection assays, Northern blotting, Western blotting, and bioconversion analysis of erythromycin intermediates. The analysis was facilitated by the construction of novel mutants containing a S. erythraea transcriptional terminator within the eryAI, eryAIII, eryBIII, eryBIV, eryBV, eryBVI, eryCIV, and eryCVI genes and additionally by an eryAI -10 promoter mutant. All mutant strains demonstrated polar effects on the transcription of downstream ery biosynthetic genes. Our results demonstrate that the ery gene cluster contains four major polycistronic transcriptional units, the largest one extending approximately 35 kb from eryAI to eryG. Two overlapping polycistronic transcripts extending from eryBIV to eryBVII were identified. In addition, seven ery cluster promoter transcription start sites, one each beginning at eryAI, eryBI, eryBIII, eryBVI, and eryK and two beginning at eryBIV, were determined.
Collapse
Affiliation(s)
- A R Reeves
- Fermentation Microbiology Research and Development, Abbott Laboratories, North Chicago, Illinois 60064-4000, USA
| | | | | | | | | |
Collapse
|
15
|
Mao Y, Varoglu M, Sherman DH. Genetic localization and molecular characterization of two key genes (mitAB) required for biosynthesis of the antitumor antibiotic mitomycin C. J Bacteriol 1999; 181:2199-208. [PMID: 10094699 PMCID: PMC93634 DOI: 10.1128/jb.181.7.2199-2208.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1998] [Accepted: 01/12/1999] [Indexed: 11/20/2022] Open
Abstract
Mitomycin C (MC) is an antitumor antibiotic derived biosynthetically from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, and carbamoyl phosphate. A gene (mitA) involved in synthesis of AHBA has been identified and found to be linked to the MC resistance locus, mrd, in Streptomyces lavendulae. Nucleotide sequence analysis showed that mitA encodes a 388-amino-acid protein that has 71% identity (80% similarity) with the rifamycin AHBA synthase from Amycolatopsis mediterranei, as well as with two additional AHBA synthases from related ansamycin antibiotic-producing microorganisms. Gene disruption and site-directed mutagenesis of the S. lavendulae chromosomal copy of mitA completely blocked the production of MC. The function of mitA was confirmed by complementation of an S. lavendulae strain containing a K191A mutation in MitA with AHBA. A second gene (mitB) encoding a 272-amino-acid protein (related to a group of glycosyltransferases) was identified immediately downstream of mitA that upon disruption resulted in abrogation of MC synthesis. This work has localized a cluster of key genes that mediate assembly of the unique mitosane class of natural products.
Collapse
Affiliation(s)
- Y Mao
- Department of Microbiology and Biological Process Technology Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
16
|
Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. CHEMISTRY & BIOLOGY 1999; 6:251-63. [PMID: 10099135 DOI: 10.1016/s1074-5521(99)80040-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.
Collapse
Affiliation(s)
- Y Mao
- University of Minnesota, Department of Microbiology, Biological ProcessTechnology Institute, 1460 Mayo Memorial Building, Box 196 UFHC, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
17
|
Sheldon PJ, Mao Y, He M, Sherman DH. Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 1999; 181:2507-12. [PMID: 10198016 PMCID: PMC93678 DOI: 10.1128/jb.181.8.2507-2512.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of Streptomyces lavendulae NRRL 2564 chromosomal DNA adjacent to the mitomycin resistance locus mrd (encoding a previously described mitomycin-binding protein [P. Sheldon, D. A. Johnson, P. R. August, H.-W. Liu, and D. H. Sherman, J. Bacteriol. 179:1796-1804, 1997]) revealed a putative mitomycin C (MC) transport gene (mct) encoding a hydrophobic polypeptide that has significant amino acid sequence similarity with several actinomycete antibiotic export proteins. Disruption of mct by insertional inactivation resulted in an S. lavendulae mutant strain that was considerably more sensitive to MC. Expression of mct in Escherichia coli conferred a fivefold increase in cellular resistance to MC, led to the synthesis of a membrane-associated protein, and correlated with reduced intracellular accumulation of the drug. Coexpression of mct and mrd in E. coli resulted in a 150-fold increase in resistance, as well as reduced intracellular accumulation of MC. Taken together, these data provide evidence that MRD and Mct function as components of a novel drug export system specific to the mitomycins.
Collapse
Affiliation(s)
- P J Sheldon
- Department of Microbiology and Biological Process Technology Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
18
|
Xue Y, Zhao L, Liu HW, Sherman DH. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 1998; 95:12111-6. [PMID: 9770448 PMCID: PMC22793 DOI: 10.1073/pnas.95.21.12111] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/1998] [Accepted: 07/31/1998] [Indexed: 11/18/2022] Open
Abstract
In a survey of microbial systems capable of generating unusual metabolite structural variability, Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolide antibiotics. Methymycin and neomethymycin are derived from the 12-membered ring macrolactone 10-deoxymethynolide, whereas narbomycin and pikromycin are derived from the 14-membered ring macrolactone, narbonolide. This report describes the cloning and characterization of the biosynthetic gene cluster for these antibiotics. Central to the cluster is a polyketide synthase locus (pikA) that encodes a six-module system comprised of four multifunctional proteins, in addition to a type II thioesterase (TEII). Immediately downstream is a set of genes for desosamine biosynthesis (des) and macrolide ring hydroxylation. The study suggests that Pik TEII plays a role in forming a metabolic branch through which polyketides of different chain length are generated, and the glycosyl transferase (encoded by desVII) has the ability to catalyze glycosylation of both the 12- and 14-membered ring macrolactones. Moreover, the pikC-encoded P450 hydroxylase provides yet another layer of structural variability by introducing regiochemical diversity into the macrolide ring systems. The data support the notion that the architecture of the pik gene cluster as well as the unusual substrate specificity of particular enzymes contributes to its ability to generate four macrolide antibiotics.
Collapse
Affiliation(s)
- Y Xue
- Department of Microbiology, University of Minnesota, Box 196, 1460 Mayo Memorial Building, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
19
|
Ruan X, Stassi D, Lax SA, Katz L. A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain. Gene X 1997; 203:1-9. [PMID: 9426000 DOI: 10.1016/s0378-1119(97)00450-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Analysis of a 32.8-kb segment of DNA from the rapamycin (Rp) producer, Streptomyces hygroscopicus ATCC 29253, revealed a new type-I polyketide synthase (PKS) cluster consisting of four open reading frames (ORF 1-4), each encoding a single PKS module. The four ORFs are transcribed in the same direction and are flanked by several smaller ORFs (ORF 5-9), which may be related to the PKS cluster. The first PKS-containing ORF has a ligase domain at the N-terminus of the polypeptide. This domain has 55% aa identity to the CoA ligase domain of the Rp PKS (Schwecke et al., 1995. Proc. Natl. Acad. Sci. 92, 7839-7843) which is also encoded in this strain (Lowden et al., 1996. Angew. Chem. Int. Ed. Engl. 35, 2249-2251). ORF5 (340 aa) and ORF6 (924 aa) were found to be homologous to RapK (41% aa identity) and RapH (35% aa identity), which are hypothesized to be a pteridine-dependent dioxygenase and a regulatory protein, respectively (Molnar et al., 1996. Gene 169, 1-7). In addition, ORF7 (391 aa) was found to have up to 42% aa identity to a number of plant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases (DAHPS) and 47% aa identity to PhzF, a bacterial DAHPS involved in phenazine antibiotic synthesis. The proximity of the DAHPS-encoding gene to the PKS cluster containing a Rp-like ligase domain suggests that a derivative of shikimate may be used as the PKS starter. ORF8 (283 aa) was found to have homology (32% aa identity) to a Synechocystis sp. gene of unknown function. The N-terminal portion of ORF9 was found to be similar to a tetracycline 6-hydroxylase (34% aa identity) from Streptomyces aureofaciens.
Collapse
Affiliation(s)
- X Ruan
- Antibacterial Discovery Research, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | | | |
Collapse
|
20
|
Kakavas SJ, Katz L, Stassi D. Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis. J Bacteriol 1997; 179:7515-22. [PMID: 9393718 PMCID: PMC179704 DOI: 10.1128/jb.179.23.7515-7522.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genes encoding the polyketide synthase (PKS) portion of the niddamycin biosynthetic pathway were isolated from a library of Streptomyces caelestis NRRL-2821 chromosomal DNA. Analysis of 40 kb of DNA revealed the presence of five large open reading frames (ORFs) encoding the seven modular sets of enzymatic activities required for the synthesis of a 16-membered lactone ring. The enzymatic motifs identified within each module were consistent with those predicted from the structure of niddamycin. Disruption of the second ORF of the PKS coding region eliminated niddamycin production, demonstrating that the cloned genes are involved in the biosynthesis of this compound.
Collapse
Affiliation(s)
- S J Kakavas
- Antibacterial Discovery Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Leonard Katz
- Abbott Laboratories, Abbott Park, Illinois 60064-3500
| |
Collapse
|
22
|
Affiliation(s)
- David A. Hopwood
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
23
|
Ruan X, Pereda A, Stassi DL, Zeidner D, Summers RG, Jackson M, Shivakumar A, Kakavas S, Staver MJ, Donadio S, Katz L. Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J Bacteriol 1997; 179:6416-25. [PMID: 9335291 PMCID: PMC179558 DOI: 10.1128/jb.179.20.6416-6425.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The methylmalonyl coenzyme A (methylmalonyl-CoA)-specific acyltransferase (AT) domains of modules 1 and 2 of the 6-deoxyerythronolide B synthase (DEBS1) of Saccharopolyspora erythraea ER720 were replaced with three heterologous AT domains that are believed, based on sequence comparisons, to be specific for malonyl-CoA. The three substituted AT domains were "Hyg" AT2 from module 2 of a type I polyketide synthase (PKS)-like gene cluster isolated from the rapamycin producer Streptomyces hygroscopicus ATCC 29253, "Ven" AT isolated from a PKS-like gene cluster of the pikromycin producer Streptomyces venezuelae ATCC 15439, and RAPS AT14 from module 14 of the rapamycin PKS gene cluster of S. hygroscopicus ATCC 29253. These changes led to the production of novel erythromycin derivatives by the engineered strains of S. erythraea ER720. Specifically, 12-desmethyl-12-deoxyerythromycin A, which lacks the methyl group at C-12 of the macrolactone ring, was produced by the strains in which the resident AT1 domain was replaced, and 10-desmethylerythromycin A and 10-desmethyl-12-deoxyerythromycin A, both of which lack the methyl group at C-10 of the macrolactone ring, were produced by the recombinant strains in which the resident AT2 domain was replaced. All of the novel erythromycin derivatives exhibited antibiotic activity against Staphylococcus aureus. The production of the erythromycin derivatives through AT replacements confirms the computer predicted substrate specificities of "Hyg" AT2 and "Ven" AT and the substrate specificity of RAPS AT14 deduced from the structure of rapamycin. Moreover, these experiments demonstrate that at least some AT domains of the complete 6-deoxyerythronolide B synthase of S. erythraea can be replaced by functionally related domains from different organisms to make novel, bioactive compounds.
Collapse
Affiliation(s)
- X Ruan
- Antibacterial Discovery Research, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Summers RG, Donadio S, Staver MJ, Wendt-Pienkowski E, Hutchinson CR, Katz L. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3251-3262. [PMID: 9353926 DOI: 10.1099/00221287-143-10-3251] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence on both sides of the eryA polyketide synthase genes of the erythromycin-producing bacterium Saccharopolyspora erythraea reveals the presence of ten genes that are involved in L-mycarose (eryB) and D-desosamine (eryC) biosynthesis or attachment. Mutant strains carrying targeted lesions in eight of these genes indicate that three (eryBIV, eryBV and eryBVI) act in L-mycarose biosynthesis or attachment, while the other five (eryCII, eryCIII, eryCIV, eryCV and eryCVI) are devoted to D-desosamine biosynthesis or attachment. The remaining two genes (eryBII and eryBVII) appear to function in L-mycarose biosynthesis based on computer analysis and earlier genetic data. Three of these genes, eryBII, eryCIII and eryCII, lie between the eryAIII and eryG genes on one side of the polyketide synthase genes, while the remaining seven, eryBIV, eryBV, eryCVI, eryBVI, eryCIV, eryCV and eryBVII lie upstream of the eryAI gene on the other side of the gene cluster. The deduced products of these genes show similarities to: aldohexose 4-ketoreductases (eryBIV), aldoketo reductases (eryBII), aldohexose 5-epimerases (eryBVII), the dnmT gene of the daunomycin biosynthetic pathway of Streptomyces peucetius (eryBVI), glycosyltransferases (eryBV and eryCIII), the AscC 3,4-dehydratase from the ascarylose biosynthetic pathway of Yersinia pseudotuberculosis (eryCIV), and mammalian N-methyltransferases (eryCVI). The eryCII gene resembles a cytochrome P450, but lacks the conserved cysteine residue responsible for coordination of the haem iron, while the eryCV gene displays no meaningful similarity to other known sequences. From the predicted function of these and other known eryB and eryC genes, pathways for the biosynthesis of L-mycarose and D-desosamine have been deduced.
Collapse
Affiliation(s)
- Richard G Summers
- Antibacterial Discovery Research Division, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Stefano Donadio
- Antibacterial Discovery Research Division, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Michael J Staver
- Antibacterial Discovery Research Division, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | | | | | - Leonard Katz
- Antibacterial Discovery Research Division, Abbott Laboratories, D-47P AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| |
Collapse
|
25
|
Motamedi H, Cai SJ, Shafiee A, Elliston KO. Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:74-80. [PMID: 9063448 DOI: 10.1111/j.1432-1033.1997.00074.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The immunosuppressant FK506 is a 23-membered macrocyclic polyketide produced by several Streptomyces species. Sequencing of a 19.5-kb contiguous segment of DNA from the FK506 gene cluster of Streptomyces sp. MA6548 revealed the presence of a single 19.3-kb open reading frame designated fkbA. fkbA encodes a component of the FK506 polyketide synthase, a complex enzyme system which catalyzes synthesis of the polyketide portion of FK506. The predicted product of gene fkbA is a 630,660-Da protein (6420 amino acids) that contains 19 independent domains with a high degree of amino acid sequence similarity to the catalytic activities of known fatty acid synthases. The identified domains are arranged into four repeated modules with a linear organization precisely as that of animal fatty acid synthase and type I polyketide synthase. Each module participates in one round of chain extension and subsequent processing and thus FkbA polypeptide catalyzes four of the ten condensation steps required for synthesis of the FK506 macrolactone ring. Disruption of fkbA results in the generation of an FK506 non-producing mutant demonstrating direct involvement of fkbA in the biosynthesis of FK506.
Collapse
Affiliation(s)
- H Motamedi
- Dept. of Natural Products Drug Discovery, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | |
Collapse
|
26
|
Lal R, Khanna R, Kaur H, Khanna M, Dhingra N, Lal S, Gartemann KH, Eichenlaub R, Ghosh PK. Engineering antibiotic producers to overcome the limitations of classical strain improvement programs. Crit Rev Microbiol 1996; 22:201-55. [PMID: 8989512 DOI: 10.3109/10408419609105481] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Improvement of the antibiotic yield of industrial strains is invariably the main target of industry-oriented research. The approaches used in the past were rational selection, extensive mutagenesis, and biochemical screening. These approaches have their limitations, which are likely to be overcome by the judicious application of recombinant DNA techniques. Efficient cloning vectors and transformation systems have now become available even for antibiotic producers that were previously difficult to manipulate genetically. The genes responsible for antibiotic biosynthesis can now be easily isolated and manipulated. In the first half of this review article, the limitations of classical strain improvement programs and the development of recombinant DNA techniques for cloning and analyzing genes responsible for antibiotic biosynthesis are discussed. The second half of this article addresses some of the major achievements, including the development of genetically engineered microbes, especially with reference to beta-lactams, anthracyclines, and rifamycins.
Collapse
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
O'Neill MP, Eady EA, Radford A, Baumberg S, Cove JH. The use of PCR to isolate a putative ABC transporter from Saccharopolyspora erythraea. FEMS Microbiol Lett 1995; 131:189-95. [PMID: 7557329 DOI: 10.1111/j.1574-6968.1995.tb07776.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A gene (ertX) encoding a putative ABC transporter was cloned from the erythromycin producer Saccharopolyspora erythraea, using PCR. The primers were based on regions of homology from ABC transporters which confer resistance to macrolide antibiotics. While ertX encodes a protein with a strong degree of similarity to other macrolide ABC transporters from streptomycetes and staphylococci, it did not confer resistance to erythromycin, tylosin, spiramycin, oleandomycin, josamcin, chalcomycin or midecamycin when subcloned into sensitive streptomycete hosts. Southern blot analysis suggested that ertX did not constitute part of the erythromycin gene cluster as identified to date.
Collapse
Affiliation(s)
- M P O'Neill
- Department of Microbiology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- L Katz
- Abbott Laboratories Department 93D, Abbott Park, IL 60064-3500, USA
| | | |
Collapse
|
29
|
Bibb MJ, White J, Ward JM, Janssen GR. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 1994; 14:533-45. [PMID: 7533884 DOI: 10.1111/j.1365-2958.1994.tb02187.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcriptional analysis of the ermE gene of Saccharopolyspora erythraea, which confers resistance to erythromycin by N6-dimethylation of 23S rRNA and which is expressed from two promoters, ermEp1 and ermEp2, revealed a complex regulatory region in which transcription is initiated in a divergent and overlapping manner. Two promoters (eryC1p1 and eryC1p2) were identified for the divergently transcribed erythromycin biosynthetic gene eryC1, which plays a role in the formation of desosamine or its attachment to the macrolide ring. Transcription from eryC1p2 starts at the same position as that of ermEp1, but on the opposite strand of the DNA helix, suggesting co-ordinate regulation of genes for erythromycin production and resistance. ermEp1 initiates transcription at, and one nucleotide before, the ermE translational start codon. Site-directed and deletion mutagenesis, combined with immunochemical analysis, demonstrated that the ermEp1 transcript is translated in the absence of a conventional ribosome-binding site to give rise to the full-length 23S rRNA methylase. Deletion of the -35 region of ermEp1 reduced, but did not abolish, promoter activity, reminiscent of the 'extended -10' class of bacterial promoters which, like ermEp1, possess TGN motifs immediately upstream of their -10 regions and which initiate transcription seven nucleotides downstream of the -10 region.
Collapse
Affiliation(s)
- M J Bibb
- John Innes Centre, Colney, Norwich, UK
| | | | | | | |
Collapse
|
30
|
Kao CM, Katz L, Khosla C. Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 1994; 265:509-12. [PMID: 8036492 DOI: 10.1126/science.8036492] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrocyclic polyketides have been subjects of great interest in synthetic and biosynthetic chemistry because of their structural complexity and medicinal activities. With expression of the entire 6-deoxyerythronolide B synthase (DEBS) (10,283 amino acids) in a heterologous host, substantial quantities of 6-deoxyerythronolide B (6dEB), the aglycone of the macrolide antibiotic erythromycin, and 8,8a-deoxyoleandolide, a 14-membered lactone ring identical to 6dEB except for a methyl group side chain in place of an ethyl unit, were synthesized in Streptomyces coelicolor. The biosynthetic strategy utilizes a genetic approach that facilitates rapid structural manipulation of DEBS or other modular polyketide synthases (PKSs), including those found in actinomycetes with poorly developed genetic methods. From a technological viewpoint, this approach should allow the rational design of biosynthetic products and may eventually lead to the generation of diverse polyketide libraries by means of combinatorial cloning of naturally occurring and mutant PKS modules.
Collapse
Affiliation(s)
- C M Kao
- Department of Chemical Engineering, Stanford University, CA 94305-5025
| | | | | |
Collapse
|
31
|
Donadio S, McAlpine JB, Sheldon PJ, Jackson M, Katz L. An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci U S A 1993; 90:7119-23. [PMID: 8346223 PMCID: PMC47087 DOI: 10.1073/pnas.90.15.7119] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The polyketide-derived macrolactone of the antibiotic erythromycin is made through successive condensation and processing of seven three-carbon units. The fourth cycle involves complete processing of the newly formed beta-keto group (beta-keto reduction, dehydration, and enoyl reduction) to yield the methylene that will appear at C-7 of the lactone ring. Synthesis of this molecule in Saccharopolyspora erythraea is determined by the three large eryA genes, organized in six modules, each governing one condensation cycle. Two amino acid substitutions were introduced in the putative NAD(P)H binding motif in the proposed enoyl reductase domain encoded by eryAII. The metabolite produced by the resulting strain was identified as delta 6,7-anhydroerythromycin C resulting from failure of enoyl reduction during the fourth cycle of synthesis of the macrolactone. This result demonstrates the involvement of at least the enoyl reductase from the fourth module in the fourth cycle and indicates that a virtually complete macrolide can be produced through reprogramming of polyketide synthesis.
Collapse
Affiliation(s)
- S Donadio
- Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064
| | | | | | | | | |
Collapse
|
32
|
Gaudreau LR, Déry CV. A cloned replicon of Saccharopolyspora phages JHJ-1 and JHJ-3 is stably maintained as a plasmid in various actinomycetes. Gene 1993; 126:141-6. [PMID: 8472955 DOI: 10.1016/0378-1119(93)90603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A replicon of phage JHJ-1 (and JHJ-3) was cloned. The autonomously replicating phage element was maintained as a medium-copy-number shuttle plasmid in many actinomycetes, and was efficiently transmitted to spores without antibiotic selection. One gene was shown to be expressed in a vector containing the JHJ-3 replicon.
Collapse
Affiliation(s)
- L R Gaudreau
- Département de Biologie, Université de Sherbrooke, Québec, Canada
| | | |
Collapse
|
33
|
Donadio S, Staver MJ. IS1136, an insertion element in the erythromycin gene cluster of Saccharopolyspora erythraea. Gene X 1993; 126:147-51. [PMID: 8386127 DOI: 10.1016/0378-1119(93)90604-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharopolyspora erythraea eryAI and eryAII genes, which, together with eryAIII, are responsible for the formation of the macrolactone portion of the antibiotic erythromycin, are separated by a 1.46-kb segment, designated IS1136, with the characteristics of an insertion sequence. It contains an open reading frame of 425 codons similar to that of the Anabaena IS891 and is present in four nonidentical copies in the Sac. erythraea genome. Inverted repeats were found near the ends of IS1136, and in the copy in eryA, one of the ends was found to overlap the 5' end of eryAII. Hybridization analysis suggests that IS1136 is confined to Saccharopolyspora species containing eryA-homologous DNA.
Collapse
Affiliation(s)
- S Donadio
- Abbott Laboratories, Abbott Park, IL 60064
| | | |
Collapse
|
34
|
Haese A, Schubert M, Herrmann M, Zocher R. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 1993; 7:905-14. [PMID: 8483420 DOI: 10.1111/j.1365-2958.1993.tb01181.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene encoding the multifunctional enzyme enniatin synthetase from Fusarium scirpi (esyn1) was isolated and characterized by transcriptional mapping and expression studies in Escherichia coli. This is the first example of a gene encoding an N-methyl peptide synthetase. The nucleotide sequence revealed an open reading frame of 9393 bp encoding a protein of 3131 amino acids (M(r) 346,900). Two domains designated EA and EB within the protein were identified which share similarity to each other and to microbial peptide synthetase domains. In contrast to the N-terminal domain EA, the carboxyl terminal domain EB is interrupted by a 434-amino-acid portion which shows local similarity to a motif apparently conserved within adenine and cytosine RNA and DNA methyltransferases and therefore seems to harbour the N-methyl-transferase function of the multienzyme.
Collapse
Affiliation(s)
- A Haese
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Semi-synthetic derivatives of erythromycin have played an important role in antimicrobial chemotherapy. First generation derivatives such as 2'-esters and acid-addition salts significantly improved the chemical stability and oral bioavailability of erythromycin. A second generation of erythronolide-modified derivatives: roxithromycin, clarithromycin, azithromycin, dirithromycin and flurithromycin, have been synthesized and have exhibited significant improvements in pharmacokinetic and/or microbiological features. In addition, erythromycin itself has expanded its utility as an effective antibiotic against a variety of newly emerged pathogens. As a result of these developments, macrolide antibiotics have enjoyed a resurgence in clinical interest and use during the past half-dozen years, and semi-synthetic derivatives of erythromycin should continue to be important contributors to this macrolide renaissance. Despite these recent successes, other useful niches for macrolide antibiotics will remain unfilled. Consequently, the search for new semi-synthetic derivatives of erythromycin possessing even better antimicrobial properties should be pursued.
Collapse
Affiliation(s)
- H A Kirst
- Natural Products Research Division, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285
| |
Collapse
|
36
|
Stassi D, Donadio S, Staver MJ, Katz L. Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J Bacteriol 1993; 175:182-9. [PMID: 8416893 PMCID: PMC196112 DOI: 10.1128/jb.175.1.182-189.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In analyzing the region of the Saccharopolyspora erythraea chromosome responsible for the biosynthesis of the macrolide antibiotic erythromycin, we identified a gene, designated eryK, located about 50 kb downstream of the erythromycin resistance gene, ermE. eryK encodes a 44-kDa protein which, on the basis of comparative analysis, belongs to the P450 monooxygenase family. An S. erythraea strain disrupted in eryK no longer produced erythromycin A but accumulated the B and D forms of the antibiotic, indicating that eryK is responsible for the C-12 hydroxylation of the macrolactone ring, one of the last steps in erythromycin biosynthesis.
Collapse
Affiliation(s)
- D Stassi
- Corporate Molecular Biology, Abbott Laboratories, Abbott Park, Illinois 60064
| | | | | | | |
Collapse
|
37
|
Gaudreau LR, Gouill CL, Déry CV. Construction of a shuttle lacmZα-based Escherichia coli-actinomycetes vector containing the phage JHJ-3 replicon. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05577.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Tercero JA, Lacalle RA, Jiménez A. Cosmid pJAR4, a novelStreptomyces-Escherichia colishuttle vector for the cloning ofStreptomycesoperons. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05417.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Caffrey P, Bevitt DJ, Staunton J, Leadlay PF. Identification of DEBS 1, DEBS 2 and DEBS 3, the multienzyme polypeptides of the erythromycin-producing polyketide synthase from Saccharopolyspora erythraea. FEBS Lett 1992; 304:225-8. [PMID: 1618327 DOI: 10.1016/0014-5793(92)80624-p] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ery A region of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea has previously been shown to contain three large open reading frames (ORFs) that encode the components of 6-deoxyerythronolide B synthase (DEBS). Polyclonal antibodies were raised against recombinant proteins obtained by overexpression of 3' regions of the ORF2 and ORF3 genes. In Western blotting experiments, each antiserum reacted strongly with a different high molecular weight protein in extracts of erythromycin-producing S. erythraea cells. These putative DEBS 2 and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the translation start sites predicted from the DNA sequences of ORFs 2 and 3. A third high molecular weight protein co-purified with DEBS 2 and DEBS 3 and had an N-terminal sequence that matched a protein sequence translated from the DNA sequence some 155 base pairs upstream from the previously proposed start codon of ORF1.
Collapse
Affiliation(s)
- P Caffrey
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
40
|
Abstract
It is argued that organisms have evolved the ability to biosynthesise secondary metabolites ('natural products') due to the selectional advantages they obtain as a result of the functions of the compounds. Pleiotropic switching, the simultaneous expression of sporulation and antibiotic biosynthesis genes in Streptomyces, is interpreted in terms of the defense roles of antibiotics. The clustering together of antibiotic biosynthesis, regulation, and resistance genes, and in particular the staggering complexity shown in the case of the gene cluster for erythromycin A biosynthesis, implies that these genes have been selected as a group and that the antibiotics function in antagonistic capacities in nature.
Collapse
|
41
|
Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L. Biosynthesis of the erythromycin macrolactone and a rational approach for producing hybrid macrolides. Gene 1992; 115:97-103. [PMID: 1612455 DOI: 10.1016/0378-1119(92)90546-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three eryA genes involved in the formation of the polyketide portion of the macrolide antibiotic erythromycin in Saccharopolyspora erythraea, appear to be organized in a single transcriptional unit on the basis of the results of gene disruption experiments. An insertion sequence-like element of lower G + C content separates eryAI from eryAII. The organization of the enzymatic domains present in the eryA-encoded multifunctional polypeptides, determined by computer-assisted analysis, is presented. This has enabled the determination of a putative dehydratase domain. A rational approach for producing novel macrolides by introducing selected changes in polyketide synthase genes is outlined. The isolation of a lactone intermediate resulting from an early synthesis step in macrolactone formation is also presented.
Collapse
Affiliation(s)
- S Donadio
- Corporate Molecular Biology Project, Abbott Laboratories, Abbott Park, IL 60064
| | | | | | | | | |
Collapse
|
42
|
Bevitt DJ, Cortes J, Haydock SF, Leadlay PF. 6-Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:39-49. [PMID: 1740151 DOI: 10.1111/j.1432-1033.1992.tb16603.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sequencing of the eryA region of the erythromycin biosynthetic gene cluster from Saccharopolyspora erythraea has revealed another structural gene (ORF B), in addition to the previously characterised ORF A, which appears to encode a component of 6-deoxyerythronolide-B synthase, the enzyme that catalyses the first stage in the biosynthesis of the polyketide antibiotic erythromycin A. The nucleotide sequence of ORF B, which lies immediately adjacent to ORF A, has been determined. The predicted gene product of ORF B is a polypeptide of 374417 Da (3568 amino acids), which is highly similar to the product of ORF A and which likewise contains a number of separate domains, each with substantial amino acid sequence similarity to components of known fatty-acid synthases and polyketide synthases. The order of the predicted active sites along the chain from the N-terminus is 3-oxoacyl-synthase--acyltransferase--acyl-carrier-protein-- 3-oxoacyl-synthase--acyltransferase--dehydratase--enoylreductase-- oxoreductase--acyl-carrier-protein. The position of the dehydratase active site has been pinpointed for the first time for any polyketide synthase or vertebrate fatty-acid synthase. The predicted domain structure of 6-deoxyerythronolide-B synthase is strikingly similar to that previously established for vertebrate fatty-acid synthases. This analysis of the sequence supports the view that the erythromycin-producing polyketide synthase contains three multienzyme polypeptides, each of which accomplishes two successive cycles of polyketide chain extension. In this scheme, the role of the ORF B gene product is to accomplish extension cycles 3 and 4.
Collapse
Affiliation(s)
- D J Bevitt
- Cambridge Centre for Molecular Recognition, University of Cambridge, England
| | | | | | | |
Collapse
|
43
|
Chapter 14. Genetic Engineering of Antibiotic Producing Organisms. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1992. [DOI: 10.1016/s0065-7743(08)60412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
44
|
Abstract
Antibiotic biosynthesis pathways are found in a broad range of Gram positive prokaryotes, a smaller range of Gram negative prokaryotes and a limited range of eukaryotes. A variety of techniques can be used to identify the genes involved in the biosynthesis of these compounds ranging from genetic complementation and interspecific gene transfer to polymerase chain reaction amplification and transposon mutagenesis. The dissection of these cloned pathways and the understanding of their structure and regulation has led to insights into the structure and function of antibiotic biosynthesis genes. With new knowledge of the structural similarities and relationships between related antibiotic biosynthesis pathways, the possibility of directed manipulation of specific genes to allow synthesis of novel antibiotics is now possible.
Collapse
Affiliation(s)
- R Kirby
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
45
|
Haydock SF, Dowson JA, Dhillon N, Roberts GA, Cortes J, Leadlay PF. Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:120-8. [PMID: 1840640 DOI: 10.1007/bf00290659] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gene cluster (ery) responsible for production of the macrolide antibiotic erythromycin by Saccharopolyspora erythraea is also known to contain ermE, the gene conferring resistance to the antibiotic. The nucleotide sequence has been determined of a 4.5 kb portion of the biosynthetic gene cluster, from a region lying between 3.7 kb and 8.2 kb 3' of ermE. This has revealed the presence of four complete open reading frames, including the previously known ery gene eryG, which catalyses the last step in the biosynthetic pathway. Comparison of the amino acid sequence of EryG with the sequence of other S-adenosylmethionine (SAM)-dependent methyltransferases has revealed that one of the sequence motifs previously suggested to be part of the SAM-binding site is present not only in EryG but also in many other recently sequenced SAM-dependent methyltransferases. Previous genetic studies have shown that this region also contains gene(s) involved in hydroxylation of the intermediate 6-deoxyerythronolide B. One of the three other open reading frames (eryF) in fact shows very high sequence similarity to known cytochrome P450 hydroxylases. An adjacent gene (ORF5) shows a strikingly high degree of similarity to prokaryotic and eukaryotic acyltransferases and thioesterases.
Collapse
Affiliation(s)
- S F Haydock
- Cambridge Centre for Molecular Recognition, UK
| | | | | | | | | | | |
Collapse
|
46
|
Robinson JA. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond B Biol Sci 1991; 332:107-14. [PMID: 1678529 DOI: 10.1098/rstb.1991.0038] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This paper gives an overview of existing knowledge concerning the structure and deduced functions of polyketide synthases active in antibiotic-producing streptomycetes. Using monensin A as an example of a structurally complex polyketide metabolite, the problem of understanding how individual strains of microorganism are 'programmed' to produce a given polyketide metabolite is first outlined. The question then arises, how is the programming of polyketide assembly related to the structural organization of individual polyketide synthase complexes at the biochemical and genetic levels? Experimental results that help to illuminate these relations are described, in particular, those giving information about the structures and deduced functions of polyketide synthases involved in aromatic polyketide biosynthesis (actinorhodin, granaticin, tetracenomycin, whiE spore pigment and an act homologous region from the monensin-producing organism), as well as the macrolide polyketide synthase active in the biosynthesis of 6-deoxyerythronolide A.
Collapse
Affiliation(s)
- J A Robinson
- Organisch-Chemisches Institut, Universität Zürich, Switzerland
| |
Collapse
|
47
|
Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 1991; 252:114-7. [PMID: 2011746 DOI: 10.1126/science.2011746] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Derivatives of erythromycin with modifications at their C-6 position are generally sought for their increased stability at acid pH, which in turn may confer improved pharmacological properties. A recombinant mutant of the erythromycin-producing bacterium, Saccharopolyspora erythraea, produced an erythromycin derivative, 6-deoxyerythromycin A, that could not be obtained readily by chemical synthesis. This product resulted from targeted disruption of the gene, designated eryF (systematic nomenclature, CYP107), that apparently codes for the cytochrome P450, 6-deoxyerythronolide B (DEB) hydroxylase, which converts DEB to erythronolide B (EB). Enzymes normally acting on EB can process the alternative substrate DEB to form the biologically active erythromycin derivative lacking the C-6 hydroxyl group.
Collapse
Affiliation(s)
- J M Weber
- BioProcess Development, Department 451/R5, Abbott Laboratories, North Chicago, IL 60064
| | | | | | | | | |
Collapse
|
48
|
Robinson JA. Chemical and biochemical aspects of polyether-ionophore antibiotic biosynthesis. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1991; 58:1-81. [PMID: 1778521 DOI: 10.1007/978-3-7091-9141-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J A Robinson
- Organisch-Chemisches Institut, Universität Zürich, Switzerland
| |
Collapse
|
49
|
Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 1990; 348:176-8. [PMID: 2234082 DOI: 10.1038/348176a0] [Citation(s) in RCA: 485] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Erythromycin A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea. The aglycone core of erythromycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis, to generate a macrolide intermediate, 6-deoxyerythronolide B. 6-Deoxyerythronolide B is converted into erythromycin A through the action of specific hydroxylases, glycosyltransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis. Partial sequencing of this region indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly.
Collapse
Affiliation(s)
- J Cortes
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | |
Collapse
|